a2 United States Patent

Kuwamura

US009465595B2

US 9,465,595 B2
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54) COMPUTING APPARATUS, COMPUTING

METHOD, AND COMPUTING PROGRAM

Applicant: FUJITSU LIMITED, Kawasaki-shi,
Kanagawa (JP)

(71)

(72)
(73)
")

Inventor: Shinya Kuwamura, Kawasaki (JP)
FUJITSU LIMITED, Kawasaki (JP)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 322 days.

Appl. No.: 14/289,772
Filed: May 29, 2014
Prior Publication Data
US 2014/0365735 Al Dec. 11, 2014
Foreign Application Priority Data

Assignee:

Notice:

@
(22)
(65)

(30)

................................. 2013-122786

Jun. 11, 2013

(51) Int. CL
GOGF 12/08
GOGF 11/34
GOGF 9/45
GOGF 12/10
GOGF 9/455
U.S. CL
CPC

(P)

(2016.01)
(2006.01)
(2006.01)
(2016.01)
(2006.01)
(52)
GOGF 8/52 (2013.01); GOGF 8/4442

(2013.01); GOGF 9/455 (2013.01); GOGF
11/3457 (2013.01); GOGF 12/0802 (2013.01);

GOGF 12/0888 (2013.01); GOGF 12/1027
(2013.01)

(58) Field of Classification Search
None

See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS

4,888,688 A * 12/1989 Hartvigsen GO6F 12/1027

5,931,951 A * 81999 Ando ... GOG6F 1/3228
711/141

6,016,466 A * 1/2000 Guinther GO6F 11/3419
702/186

6,442,652 B1* 82002 Laboyccoco.n. GO6F 11/00
455/12.1

2002/0166112 A1* 112002 Martin GO6F 11/3447
717/124

2004/0193395 Al* 9/2004 Paulraj GO6F 17/5018
703/22

2005/0120341 Al* 6/2005 Blumenthal GO6F 11/3428
717/158

2009/0119477 Al1* 5/2009 Plondke GO6F 12/1027
711/207

FOREIGN PATENT DOCUMENTS

JP 2001-249829 9/2001

* cited by examiner

Primary Examiner — Michael Krofcheck
(74) Attorney, Agent, or Firm — Staas & Halsey LLP

(57) ABSTRACT

A computing apparatus computes a performance value of a
program which includes a specific code which is executed
multiple times by the processor and an access instruction for
instructing the processor to access a memory area. The
computing apparatus includes: a determining unit that deter-
mines, whether or not a cache memory is available for use
at a time of execution of the access instruction in a simu-
lation of an operation in which the processor executes the
program; a generating unit that generates, in a case where
the first determining unit has determined that the cache
memory is not available, a computational code for comput-
ing the performance value of the specific code for a case
where the processor executes the specific code, based on
performance values of individual instructions within the
specific code for a case where the cache memory is not used,
without depending on an attribute of the memory area.

711/202
5,845310 A * 12/1998 Brooks GOG6F 11/32
710/18 14 Claims, 37 Drawing Sheets
100
oe11 rE;12
ARM_NSTRUCTION <COMPUTATIONAL CADE > <COMPUTATIONAL CODE>
] ARM_INSTRUCTION i2 |:> <CFUNCTIONAL CODE> fe1 <FUNCTIONAL CODE>
HOST INSTRUCTION OF 185_ " HOSTINSTRUCTION OF 185
|| NSTRUCTON 1 INSTRUCTION 1
1] HOST INSTRUCTION OF 185._ HOST INSTRUCTION OF 185_

pel-|

.

3

INSTRUCTION 2

L INSTRUCTION OF INSTRUCTION it

FUNCTION 1 CALL
INSTRUCTION OF INSTRUCTION i2 e

<PERFORMANCE EVALUATION CODE>
PERFORMANCE COMPUTING

HELPER FUNCTI

pc2-|

INSTRUCTION 2

G
L INSTRUCTION OF INSTRUCTION i

INSTRUCTION CF INSTRUCTION 2 7

<PERFORMANCE EVALUATION CODE>
PERFORMANCE COMPUTIN

PERFORMANCE COMPUTING

OPERATION SIMULATION

TARGET CPU
e .
CACHE MEMORY 1102

MEMORY

103

!

_____ EXECUTION
(FIRSTTIME)

!

EXECUTION
(SECOND AND LATER TIMES)

US 9,465,595 B2

Sheet 1 of 37

Oct. 11, 2016

U.S. Patent

(SIWIL LY ANY ANOD3S)
NOILNI3X3

A CINGILONYLSNI 40 NOLLONELINI

ONLLNANOD FONYIWH01d3d

ONILNANOD FONYIWHOLH3d
<3000 NOILVNTYAZ JONVINIO 43>

A _ ¢ NOLLONILSNI

98x 40 NOILONYLSNI LSOH
W NOILINYLSNI

<3003 TYNOILONN4 >

<3003 TWNOILYLNdNOD>

ENOILINALSNI 40 NOLLONYLSNI 1

98X 40 NOILONMLSNI LSOH [

| ~¢od

19

~
FAR)

~

00}

€0} 1 v
ASONAN
(3L 18414) COLI| AMOREN3HOY
NOLNOADE [
......... >l Y40 3LNAIMLLY
PR & B o
y NOLLYTNIAIS NOILYY3dO
/1 ~
¢ NOILONGLSNT 40 NOILONYISN] wis
T | NOILONNA ¥3dTH | |- Jod
I NOLLONYLSNI 40 NOILONMLSNI
INILNAINOD IONYINHO
<3000 NOILYATYAT JONYWHO43d >
E ‘_ma../l D
A 2 NOILONYLSNI H “
98X 40 NOILOMYLSNI ISOH | |~ 14 |
09640 NOLONGLSN 501 |
<3009 TYNOLLONN4> Au 2! NOLLONLSNI Wy £ 1
<3000 TYNOILYLNIWOD > IENOILONYLSNI ¥]
—~
1199 S——
I 'Old

US 9,465,595 B2

Sheet 2 of 37

Oct. 11, 2016

U.S. Patent

MHOMLAN
13N
I0IA3A LNdLNO 301A3A LNdNI 4/1
~ 1 ~ & ~ &
807 107 907
)\ \)
\/\ A A A A
002
\ 4 v \' \'2
JAINA YSIa NV NOY NdD 1SOH
~ A ~ ~ ~
702 £0Z 202 102
\ 4
SIa /\/
00}
o
¢ 9Old

U.S. Patent Oct. 11, 2016 Sheet 3 of 37 US 9,465,595 B2

FIG. 3

par 320 321

TARGET TIMING PREDICTION
PROGRAM INFORMATION INFORMATION

COMPUTING APPARATUS 100

CODE CONVERTING UNIT 301

BLOCK DIVIDING PART 311

DETERMINING PART S 312

PREDICTION SIMULATION
EXECUTION PART 313

CODE GENERATING PART 314

[COMPUTATIONAL CODE]

\/

CODE EXECUTION UNIT 302

303
CODE OPTIMIZATION UNIT

SIMULATION INFORMATION COLLECTING UNIT 1\~ 304

U.S. Patent Oct. 11, 2016 Sheet 4 of 37 US 9,465,595 B2

FIG. 4

Id 1], @ /]—r2
r3, rd @ /7 13%r4 —r5
add @ @ ro; / r2+15—r16

mult

US 9,465,595 B2

Sheet 5 of 37

Oct. 11, 2016

U.S. Patent

- Z9 :p. ERANENRE ¢ ppe
- £o :pJ ¢9:7S) ‘|9 :|s! ¢ Hnw
g:35n 503 VAV 811 0 SHOVD V1va ¢o P Sllee ¢ P
¢ 9Old

U.S. Patent Oct. 11, 2016 Sheet 6 of 37 US 9,465,595 B2

FIG. 6A

EXECUTABLE
FROM HERE

o

tt+1 t+2 t+3 t+4 t+5 t+6 t+7 TIMING(CYCLE)

e I e
- 112
mit i
add
2.CYCLE STALL

FIG. 6B
EXECUTABLE FROM HERE
l l TIMING (CYCLE)

tot+1 t+2 143 t+4 t+5 146 t+7 t+8 t+9 t+10t+11

d | 6CYCLES(PENALTY) | 5

---------- e e e \ | \ A

mat 4 11203 1 1 i e
: ' ! ' € e

add AN 12| i

4-CYCLE STALL

U.S. Patent Oct. 11, 2016 Sheet 7 of 37 US 9,465,595 B2

FIG. 7
/\3/21

PROCESSING DETAILS PREDICTION CASE
DATA CACHE HIT
INSTRUCTION CACHE HIT
TLB HIT
BRANCH PREDICTION HIT
CALL/RETURN HIT

US 9,465,595 B2

Sheet 8 of 37

Oct. 11, 2016

U.S. Patent

3409
1¥YNOILY.LNdNOD

819497 ¢DTISU[ISOH
ounj ¢ 1suf JsoH
ouny |9 1suf_JSoH
ouny 00 1suf JsoH
(\\\
91940769 ISU ISOH
91940 g 1SU[ISOH

ouny~¢gISulJSOH
ouNj~zg ISU] JSOH
ounj”| g 7JSulJSOH

ounj~0g 1su[1S0H

919A0 ¢y 1SUL JSOH
819A0 ™2y ISU T ISOH

ouny” | JSU[JSOH
ouny 0 JSU[JSOH

300D
1YNOILONNA

ouny 2 JSUl ISOH
ou EI POI#wEIHwOI

J\

N

2uny~0)TISUT ISOH

~— ——— OO o>

ouny”e g 1SU[JSOH
ouny”zg 1su[JSoH

A

10014

ouny”| g 1su1 JSoH
ouny~(0g 1sul 1S0H

ouny~ |/ JSUT JSOH

I
I
1
|
I
I
I
1
1
|
I
I
|
I
|
I
I
|
I
I
I
|
|
|
I
I
|
|
|
A |
T
1
|
I
I
I
1
1
1
|
I
I
|
I
|
I
I
I
I
I
|
|
|
I
I
|
|
|
|

3002 NOILYNTVAS

ouny Oy isuf JsoH

Am_oz<_>_w_on_w_m_n_ 40 zo_too,qv

8 OlId

CONMIANOD LIr>

US 9,465,595 B2

Sheet 9 of 37

Oct. 11, 2016

U.S. Patent

506
/)
LMV <
ONILOTHN0D Kk
18Vd 1NdLNO wz_m_w/_/mammo @z_ZF_w,_mmEo 1dvd
aNod3s~ | 1SH1 NOILNO3X3
~ 7 7 7
y06 c06 206 106

1IN NOILND3XE 3d0D

1

20¢
6 9ld

US 9,465,595 B2

Sheet 10 of 37

Oct. 11, 2016

U.S. Patent

1001 101 - 10490
J T™IOS J ﬂ
S 1SITNOILONYLSNI
\ TIVO
d318193y 8L08X0 NOLLONYLSNI PP 40
IS LNO9 4 NOILONLSNI ONILNINOD FONVIHO
_m NOLLONMLSNI 1w 40
o m f NOILONYLSNI ONILNJWOD FONYANOAL
JHOVD V1v(a L edbyT NOILONGLSNI 140
AYINT “_. ,NOILONGIGNI TI70 FNOILONNA ¥3dTH | 81.08X0
FIavL3Dvd LN __ /NOLLONYLSNI PPe 40 NOILINYLINI LSOH
sl L NOIONNA | NOILONYLSNI Inw 40 NOILONMLSNI LSOH
Ndo 1394V ¥3d13H NOILONYLSNI PI 40 NOLLONMLSNI LSOH | SSTHAaV
NOILYINWIS NOILYS3dO 3002 TYNOILY.LNdINOD 3LND3XT
wis 0L ©I4

US 9,465,595 B2

Sheet 11 of 37

Oct. 11, 2016

U.S. Patent

NOILONYLSNI PPE 40
NOILINYLSNI ONILNdWOI FONYIWHOSd3d

NOILONHLSNI W 40
NOILINYLSNI ONILNdNOD FONYIWHOSH3d

NOLLONYLSNI P 40

NOILONYLSNI ONILNdNO FONYIWHOS3d
NOILIMALSNI PPE 40 NOILONHLSNI LSOH
NOILONYLSNHINW 40 NOILONYLSNI LSOH

NOILONYLSNI P 40 NOILONYLSNI LSOH

l

NOILONYLSNI PPE 40
NOILINYLSNI ONILNdWOO FONYNHO443d
NOILONYLSNI Inw 40
NOILINYLSNI ONILNdWOO FONYWHOSH3d

NOILONYLSNI P 40

-~ NOILONYLSNI TI¥D | NOILONNA ¥3d13H
NOILINYLSNI PPE 40 NOILONHLSNI L1SOH
NOILINYLSNI Inw 40 NOILONYLSNI LSOH

NOILINYLSNI PI 40 NOILINYLSNI LSOH

1

¢

7\\

10199

Ll Ol

8108X0 .

SSRaav

~—

8108%0
LSITNOILONYLSNI

T1v0
1

Jadjpy]

US 9,465,595 B2

Sheet 12 of 37

Oct. 11, 2016

U.S. Patent

NOILONYLSNI PPE 40
NOILONYLSNI ONILNdWOD FONYINHOL43d

NOILOMYLSNI Hinw 40
NOILINYLSNI ONILNINOD FONYWHOF43d
NOILONYLSNI P[40

NOILONYLSNI T1¥O ¢ NOILONNS d3d13H |
NOILIMY LSNI PPE 40 NOILONHLSNI LSOH
NOILONYLSNI HinW 40 NOILONYLSNI LSOH
NOILOMY LSNI PI 40 NOILONYLSNI LSCH

NOILONYLSNI PPe 40
NOILINYLSNI ONILNANOD FONYWHOLH3d

NOILONHLSNI Hinw 40

NOILOMYLSNI ONILNdNOO FONYIWHO443d
NOILONYLSNI P 40

..... NOILONYLSNI TIVO | NOILONNA ¥3d13H
NOILINYLSNI PPE 40 NOILINHLSNI LSOH
NOILONYLSNI Iinw 40 NOILONYLSNI LSOH
NOILONYLSNI PI 40 NOILONYLSNI LSOH

1

€¢10

1

10199

LSITNOILONYLSNI
TV

1

Jadjoy ™

81080

SSaavY

A B

U.S. Patent Oct. 11, 2016 Sheet 13 of 37 US 9,465,595 B2

FIG. 13

cache_ld(address, rep_delay, pre_delay) {
avail_delay = 0;
if(pre_delay < current_time - preld_time)
avail_delay = pre_delay — current_time + preld_time;
cache_lookup(address);
if(cache_hit) {
cache_update_onhit(address);

}else {
cache_update_onmiss(address);
avail_delay += cache_miss_latency
if(rep_delay < avail_delay)
avail_delay —= avail_delay - rep_delay;
}

preld_time = current_time;

U.S. Patent

Oct. 11, 2016

Sheet 14 of 37

US 9,465,595 B2

FIG. 14A
3 CYCLES,,
|Id N
= |d [r1], r2; [11] —r2
[mult } mult r3, 14, 15; 13 rd—r5
add add r2,r5, 16, r2+r5—rb
FIG. 14B ——
——
mult
‘ ‘ add
FIG. 14C cache_ld(addr, 3, -1)
7-3=4 CYCLES | /
| | IdI |
mult
e
t1
FIG. 14D
PELATED AR ERROR

mult

US 9,465,595 B2

Sheet 15 of 37

Oct. 11, 2016

U.S. Patent

A —
IR | — D
NONE 4
e |
SI10A 7= ﬁ el
€-%-W-1-1=% U w AN~ L
“ P~
(1 ‘Z '1PPE) PI"0YBd «t—T | T
(1- '€ PPRJPr OB« ~—— Fegmopeesy O
PPEj~— 7 _
cbm/ nu
AN P .
[IS
g—rgg o | | [PEr—pek sht9z
U7 Y ppe T f
J1<—9lxGli/1'o) ') Jnuw PN)
p—led i 8] P N
A DEAA O I L _
T10AD |
ER YRR

14dv dd1vidd
dst old

oGl Old

a5l Ol

val Old

U.S. Patent Oct. 11, 2016 Sheet 16 of 37 US 9,465,595 B2

FIG. 16A
_ 3CYCLES
1 CYCLE,
|
" Id 1], r2; 1] —=r2
\\ld ld [r3], r4; [r3] —r4
) mult 15,16, 17, r5* 6 —r7
2CYCLES | D]mult add 12,14, 12; r2+14 —r2
7 add 12,17, 12, 12+17 —12
\add
FIG. 16B
]]]] 1 1 1
. ld
ld ~
mult
add
S
FIG. 16C
. 7-3=4CYCLES | *, > cache_ld(addr, 3, -1)
L Idl L ///,,, cache_ld(addr, 1, 2)
I p—— |
[o dd] S|
V) N * =—1CYCLE
*t4—tg—2>HIT-LATENCY
add
24
t1
FIG. 16D
PELATED ART — R
| |) [| I I ! | i i
id N\ I
‘ AN id : |

7

U.S. Patent Oct. 11, 2016 Sheet 17 of 37 US 9,465,595 B2

FIG. 17

(' START)

A

51701

HAS COMPUTATION
OF PERFORMANCE VALUE
OF TARGET PROGRAM BEEN
COMPLETED?

YES

51706
vy

COLLECT
COMPUTING RESULTS NO

COMPUTATIONAL CODE
GENERATING PROCESS | [51702

(END)

51703 51704
EXECUTE o PERFORM OPERATION
COMPUTATIONAL CODE SIMULATION CONCERNING
TARGET BLOCK

COMPUTATIONAL CODE
OPTIMIZING PROCESS N-51705

U.S. Patent Oct. 11, 2016 Sheet 18 of 37 US 9,465,595 B2

FIG. 18

START

HAS COMPILING OF
TARGET BLOCK BEEN
COMPLETED?

51801

DIVIDE TARGET PROGRAM
AND ACQUIRE DIVIDED TARGET BLOCK [>1802

v
DETECT EXTERNALLY DEPENDENT INSTRUCTION [™~-51803

v

SET PREDICTION CASE FOR EXTERNALLY
DEPENDENT INSTRUCTION BASED ON 51804
PREDICTION INFORMATION

v

PERFORM, BASED ON TIMING INFORMATION,
PREDICTION SIMULATION OF PERFORMANCE |~ _ 51805
VALUE OF EACH INSTRUCTION

FOR SET PREDICTION CASE

v

GENERATE COMPUTATIONAL CODE INCLUDING
FUNCTIONAL CODE AND CODE BASED ON 51806
PREDICTION SIMULATION RESULT

5

(END)

U.S. Patent Oct. 11, 2016 Sheet 19 of 37 US 9,465,595 B2

FIG. 19

ACQUIRE COMPUTATIONAL CODE 51901

v

REPLACE HELPER FUNCTION 1 CALL
INSTRUCTION REPRESENTED BY ADDRESS L~ _ 51902
WITHIN CALL INSTRUCTION LIST OF
COMPUTATIONAL CODE WITH PERFORMANCE
COMPUTING INSTRUCTION

v

DETECT HELPER FUNCTION 1 CALL
INSTRUCTION OTHER THAN HELPER
FUNCTION 1 CALL INSTRUCTION 51903
REPRESENTED BY ADDRESS WITHIN CALL
INSTRUCTION LIST OF COMPUTATIONAL CODE

v
REPLACE DETECTED HELPER
FUNCTION 1 CALL INSTRUCTION WITH 51904
HELPER FUNCTION 2 CALL INSTRUCTION

END

U.S. Patent Oct. 11, 2016

Sheet 20 of 37

FIG. 20

NO

START

IS DATA
CACHE MEMORY

IN AVAILABLE
STATEFOR
USE?

DOES ATTRIBUTE
OF ACCESS DESTINATION
INDICATE THAT DATA CACHE
MEMORY IS AVAILABLE

OUTPUT ADDRESS OF
CURRENT HELPER FUNCTION
1 CALL INSTRUCTION TO

FOR USE?

|~52005

US 9,465,595 B2

CALL INSTRUCTION LIST YES
52006
IS PREDICTION NO L
CASE HIT?
s 52003
DCES RESULT
NO_~" OF CACHE ACCESS
2007 MATCH&%;E%@T!ON
CORRECT PERFORMANCE
VALUE OBTAINED THROUGH YES
PREDICTION SIMULATION
52008 §§004
OUTPUT PERFORMANCE
OUTPUT CORRECTED VALUE OBTAINED THROUGH
PERFORMANCE VALUE PREDICTION SIMULATION

N,

END

U.S. Patent Oct. 11, 2016 Sheet 21 of 37
FIG. 21
START
DOES RESULT
OF CACHE ACCESS
MATCH PREDICTION
ff}“ CASE?
CORRECT PERFORMANCE
VALUE OBTAINED THROUGH
PREDICTION SIMULATION
$2104 Sfﬂ 02
y OUTPUT PERFORMANCE
QUTPUT CORRECTED VALUE OBTAINED THROUGH
PERFORMANCE VALUE PREDICTION SIMULATION

LN

Y.

Cao)

US 9,465,595 B2

U.S. Patent Oct. 11, 2016 Sheet 22 of 37 US 9,465,595 B2

FIG. 22
pgr 320 321

TARGET TIMING PREDICTION
PROGRAM INFORMATION INFORMATION

COMPUTING APPARATUS 100

CODE CONVERTING UNIT 301

BLOCK DIVIDING PART 311

FIRST DETERMINING PART 2211

SECOND DETERMINING PART r™-2212

PREDICTION SIMULATION
EXECUTION PART 313

CODE GENERATINGPART [\-314

[COMPUTATIONAL CODE]
CODE EXECUTION UNIT 302
CODE OPTIMIZATION UNIT L~ 2201

DETERMINING PART INVALIDATING PART
~ 2221 ~ 2227

SIMULATION INFORMATION COLLECTING UNIT "\~ 304

US 9,465,595 B2

Sheet 23 of 37

Oct. 11, 2016

U.S. Patent

€EC0_

NOILINYLSNI PP 40 NOILINYLSNI ONILNJWOO JONYIWHO3d
NOILINYLSNIINW 40 NOILONYLSNI ONILNINOO FONYINHO443d

NOILONYLINI A 40 NOILONYLSNI TTVO NOILONMNA ¥3d13H
A NOILONYLSNI PRE 40 NOILOMYLSNI LSOH
NOILOMYLSNI HN 40 NOLLOMYLSNI LSOH

NOILONYLSNI PI 40 NOILONYLSNI LSOH

NOILINYLSNI PP 40 NOILONYLSNI ONILNdWOO FONYIWHO3
NOILOMYLSNI HNW 40 NOILINH LSNI ONILNdWOO JONYIWHORIA
"> NOILINYLSNIPI 40 NOILIMALSNI ONILNdWOD FONYIWHOL3d
NOILONYLSNI PRE 40 NOILONHLSNI LSOH
NOILONYLSNIHNW 40 NOILONYLSNI LSOH

NOILINHLSNI Pl 40 NOILONYLSNI LSCH

1001 10} =0 TL0S

f f 1108

EIRREN R
AJONIN WO8INOD L

JHOVD Y1va L R

0=0 THLOS

NdD 13941
NOILYINIAIS NOILYHIdO 26700~
s |
€¢ 9Old

US 9,465,595 B2

Sheet 24 of 37

Oct. 11, 2016

U.S. Patent

EYC0~_

L0VZ 101
f f 8108
w
NERRE N
a1l TOUINOD kL
W3LSAS
NdD 1394vVL
NOILYTNIS NOILYH3dO

NOILINYLSNI PP 40 NOILINYLSNI ONILNJWOO JONYIWHO3d
NOILINYLSNIINW 40 NOILONYLSNI ONILNINOO FONYINHO443d

NOILONYLINI A 40 NOILONYLSNI TTVO NOILONMNA ¥3d13H
A NOILONYLSNI PRE 40 NOILOMYLSNI LSOH
NOILOMYLSNI HN 40 NOLLOMYLSNI LSOH

NOILONYLSNI PI 40 NOILONYLSNI LSOH

=N TH10S

P

%

0= "TH10S

g0~

NOILINYLSNI PP 40 NOILONYLSNI ONILNdWOO FONYIWHO3d
NOILOMYLSNI HNW 40 NOILINH LSNI ONILNdWOO JONYIWHORIA
"> NOILINYLSNIPI 40 NOILIMALSNI ONILNdWOD FONYIWHOL3d
NOILONYLSNI PRE 40 NOILONHLSNI LSOH
NOILONYLSNIHNW 40 NOILONYLSNI LSOH

NOILINHLSNI P 40 NOILONYLSNI LSOH

1

wis

¢ Old

U.S. Patent Oct. 11, 2016 Sheet 25 of 37 US 9,465,595 B2

FIG. 25

START

HAS COMPILING OF
TARGET BLOCK BEEN
COMPLETED?

52501

DIVIDE TARGET PROGRAM
AND ACQUIRE DIVIDED TARGET BLOCK 52502

v
DETECT EXTERNALLY DEPENDENT INSTRUCTION r™~-82503

v

DETERMINE WHETHER DATA CACHE
MEMORY 1S AVAILABLE FOR USE 52504

¥
DETERMINE WHETHER TLB IS AVAILABLE FOR USE ™~—582505

v

SET PREDICTION CASE CONCERNING
EXTERNALLY DEPENDENT INSTRUCTION BASED | _g0s06
ON PREDICTION INFORMATION AND RESULT
OF DETERMINATION AS TO AVAILABILITY

¥

PERFORM, BASED ON TIMING INFORMATION,

PREDICTION SIMULATION OF PERFORMANCE | ~_g0507

VALUE OF EACH INSTRUCTION
IN'SET PREDICTION CASE

¥

GENERATE COMPUTATIONAL CODE INCLUDING
FUNCTIONAL CODE AND CODE BASED ON 352508
PREDICTION SIMULATION RESULT

7

Y

Can D

U.S. Patent Oct. 11, 2016 Sheet 26 of 37 US 9,465,595 B2

FIG. 26

START

IS DATA CACHE
MEMORY SHIFTED FROM
UNAVAILABLE STATE FORUSE TO
AVAILABLE STATE
FOR USE?

IS TLB SHIFTED
FROM UNAVAILABLE STATE FOR
USE TO AVAILABLE STATE
FOR USE?

YES

4

INVALIDATE COMPUTATIONAL CODE
STORED IN ASSOCIATION WITH EACH BLOCK [52603

(N

Y

oo

US 9,465,595 B2

Sheet 27 of 37

Oct. 11, 2016

U.S. Patent

o7z 101 A SNMQ
J S J LSITNOILONYLSNI
N 17v2
d31s1o3d 8L08%0 NOLLONYLSNI PPe 40
IOSLNOD f NOILONM LSNI ONILNANOZ FONYAHOA4d
m NOLLONMLSNI N 40
- w f NOILONYLSNI ONILNJINO2 ZONYH0ATd
U adby NCILOTEISNI L0
NETTRE ,__ , NOILOMYLSNI TIV0 F NOILONNA ¥3d 13H | 8108%0
¥sdd LN __ | NOLLONYLSNI PPE 40 NOLLONHLSNI LSOH
~5] PNOILONNA [NOILOMMLSNIINW 40 NOLLONYLSNI LSOH
Nd2 1393v1 ¥3dT3H NOILOMMLSNI PI 40 NOILONYLSNI LSOH | SSFMaay
NOILYININIS NOILYd3dO 3002 YNOILYLNdNOD 31N93X3
s LZ Old

U.S. Patent Oct. 11, 2016

Sheet 28 of 37 US 9,465,595 B2

FIG. 28
START
52801
NO IS TLB
AVAILABLE FOR
v USE?
CORRECT PERFORMANCE |,-52807
VALUE OBTAINED THROUGH
PREDICTION SIMULATION
OUTPUT CORRECTED ~ |r52808
; - PRIVILEGED
PERFORMANCE VALUE S
52803 N5
OUTPUT ADDRESS OF
CURRENT HELPER FUNCTION
CALL INSTRUCTION TO CALL
INSTRUCTION LIST
52805
52809 PREDICTION
; ~ CASE?
CORRECT PERFORMANCE
VALUE OBTAINED THROUGH
PREDICTION SIMULATION
$2810 |NO
OUTPUT CORRECTED CASEHIT?
PERFORMANCE VALUE
(32806
OUTPUT PERFORMANCE
VALUE OBTAINED THROUGH
PREDICTION SIMULATION

3
rg

(END)

U.S. Patent Oct. 11, 2016

Sheet 29 of 37

US 9,465,595 B2

FIG. 29

52903

CORRECT PERFORMANCE
VALUE OBTAINED THROUGH
PREDICTION SIMULATION

52904

OUTPUT CORRECTED
PERFORMANCE VALUE

START

DOES RESULT
OF TLB SEARCH
MATCH PREDICTION
CASE?

52902
f‘J

OUTPUT PERFORMANCE
VALUE OBTAINED THROUGH
PREDICTION SIMULATION

LN

(END)

US 9,465,595 B2

Sheet 30 of 37

Oct. 11, 2016

U.S. Patent

¢—¢0g

/\/

CIANY 1 SNOILONYLSNI 40 € NOILONYLSNI ONILNAINOD JONYWHO0443d

CHANY LESNOILONYLSNI 40 € NOILINYLSNI ONILNINOD FONYWHO4H3d

CIANY 1 SNOILONYLSNI 40 | NOILONYLSNI ONILNAINGD JONYWHOF43d
(INCILONMHLSNI 40 NOILONYLSNI LSCH
I NOILONYLSNI 40 NOILONYLSNI LSOH

CINFNIACENI HLAH>

¢INOILINALSNI 40 € NOILIMELSNI ONILNNOI FONYW0443d
¢! NOILINALSNI 40 ¢ NOILIMHLSNI ONILNANOD FONYWHO0S43d
¢INOILONYLSNI 40 | NOILINYLSNI ONILNANCD JONYWHO0443d
HNOILINALSNI 40 € NOILIMULSNI ONILNANOD FONYWHOA43d
VW NOILONYLSNI 40 ¢ NOILONYLSNI ONILNAINGD FONYWHOS43d
HNOILONYLSNI 40 | NOILONYLSNI ONILNAINGD FONYWHOA43d

{INGILOMHLSNI 40 NOILONYLSNI LSOH

L NCILONYLSNI 40 NOILOMYLSNI LSOH

7

1 =¢0€

0¢ Old

¢! NOILOMHLSNI 40 NOILONSLSNI TIYD | NOILONNA ¥3dT3H
VINOILINYLSNI 40 € NOILIMALSNI ONILNNOD FONYWHO443d
VINOILINYLSNI 40 ¢ NOILIMILSNI ONILNWOD JONYWHO43d
VI NOILONYLSNI 40 | NOILONYLSNI ONILNNOD JONYWHO43d
CINOILOMELSNI 40 NOILONYLSNI LSOH

W NOILONYLSNI 40 NOILONELSNI LSOH

~J

10€30

US 9,465,595 B2

Sheet 31 of 37

Oct. 11, 2016

U.S. Patent

G01E

L

14Yd
ONIOV1d3d

A

70 W €0 _/M 20 wm/ 10 kM
14vd 14vd
14vd 1yvd
«—— ONILD3130 [ONILDALIa K
ONILYINI VO AT i NOILISINDOY

LINN NOILVYZINILJO 3d0D

1

10¢¢

1€ Old

U.S. Patent Oct. 11, 2016 Sheet 32 of 37 US 9,465,595 B2

FIG. 32

m_helper=6

1:HOST INSTRUCTION OF INSTRUCTION i1

2: HOST INSTRUCTION OF INSTRUCTION i2

3: PERFORMANCE COMPUTING INSTRUCTION 1 OF INSTRUCTION it

4: PERFORMANCE COMPUTING INSTRUCTICN 2 OF INSTRUCTION i1: PERFORMANCE VALUE=1
5: PERFORMANCE COMPUTING INSTRUCTION 3 OF INSTRUCTION 11

6: HELPER FUNCTION 1 CALL INSTRUCTION OF INSTRUCTION i2: PERFORMANCE VALUE =2 <—m_helper

cc321
/_/

FIG. 33

r_start=3

1:HOST INSTRUCTION OF INSTRUCTION i1
2: HOST INSTRUCTION OF INSTRUCTION i2
3: PERFORMANCE COMPUTING INSTRUCTICN 1 OF INSTRUCTION i1 r_start
4 PERFORMANCE COMPUTING INSTRUCTION 2 OF INSTRUCTION i1 PERFORMANCE VALUE=1
5: PERFORMANCE COMPUTING INSTRUCTION 3 OF INSTRUCTION i1

6. HELPER FUNCTION 1 CALL INSTRUCTION OF INSTRUCTION i2: PERFORMANCE VALUE=2

cc321
/_/

FIG. 34

rend=6

1:HOST INSTRUCTION OF INSTRUCTION i1
2:HOST INSTRUCTION OF INSTRUCTION 2
3: PERFORMANCE COMPUTING INSTRUCTICN 1 OF INSTRUCTION if < r_start
4: PERFCRMANCE COMPUTING INSTRUCTICN 2 OF INSTRUCTION i1: PERFORMANCE VALUE=1
5; PERFORMANCE COMPUTING INSTRUCTION 3 OF INSTRUCTION i1

6 HELPER FUNCTION 1 CALL INSTRUCTION OF INSTRUCTION i2: PERFORMANCE VALUE=2 <——r_end

cc321
/_/

U.S. Patent Oct. 11, 2016 Sheet 33 of 37 US 9,465,595 B2

FIG. 35

sum=1+2=3

1:HOST INSTRUCTION OF INSTRUCTION 11
2:HOSTINSTRUCTION OF INSTRUCTION 12
3: PERFORMANCE COMPUTING INSTRUCTION 1 OF INSTRUCTION it r_start
4: PERFORMANCE COMPUTING INSTRUCTION 2 OF INSTRUCTION i1. PERFORMANCE VALUE=1
5: PERFCRMANCE COMPUTING INSTRUCTION 3 OF INSTRUCTION it

6 HELPER FUNCTION 1 CALL INSTRUCTION OF INSTRUCTION i2: PERFORMANCE VALUE=2 <——_end

cc321
f_/

FIG. 36 02362

1:HOST INSTRUCTION OF INSTRUCTION i1
2: HOSTINSTRUCTION OF INSTRUCTION 2
3: PERFCRMANCE COMPUTING INSTRUCTION 1 OF INSTRUCTIONS i1 AND 2« r_start
4 PERFORMANGE COMPUTING INSTRUCTION 2 OF INSTRUCTIONS 11 AND i2: PERFORMANCE VALUE=3
5: PERFORMANCE COMPUTING INSTRUCTION 3 OF INSTRUCTIONS i1 AND 2

6: <~——r_end
FIG. 37
L_helper={2} ff§§71

1:HOST INSTRUCTION OF INSTRUCTION i1

2: HELPER FUNCTION 1 CALL INSTRUCTION OF INSTRUCTION i1: PERFORMANCE VALUE=2

3 HOST INSTRUCTION QF INSTRUCTION i2

4 PERFORMANCE COMPUTING INSTRUCTION 1 OF INSTRUCTION i2

5: PERFORMANCE COMPUTING INSTRUCTION 2 OF INSTRUCTION i2: PERFORMANCE VALUE=1
6: PERFORMANCE COMPUTING INSTRUCTION 3 OF INSTRUCTION i2

U.S. Patent Oct. 11, 2016 Sheet 34 of 37 US 9,465,595 B2

FIG. 38

m_helper=2

1:HOST INSTRUCTION OF INSTRUCTION it
2: HELPER FUNCTION 1 CALL INSTRUCTION OF INSTRUCTION i1: PERFORMANCE VALUE=2 <~——m_helper
3 HOST INSTRUCTION OF INSTRUCTION i2

£; PERFORMANCE COMPUTING INSTRUCTION 1 OF INSTRUCTION i2

&: PERFORMANCE COMPUTING INSTRUCTION 2 CF INSTRUCTION i2: PERFORMANCE VALUE=1
€: PERFORMANCE COMPUTING INSTRUCTION 3 CF INSTRUCTION 2

cc371
r_/

FIG. 39

r_start=2

1:HOST INSTRUCTION OF INSTRUCTION it
2. HELPER FUNCTION 1 CALL INSTRUCTION OF INSTRUCTION i1: PERFORMANCE VALUE=2 <——_start
J:HOST INSTRUCTION OF INSTRUCTION i2

£; PERFORMANCE COMPUTING INSTRUCTION 1 CF INSTRUCTION 2

5: PERFORMANCE COMPUTING INSTRUCTION 2 CF INSTRUCTION i2: PERFORMANCE VALUE=1
£: PERFORMANCE COMPUTING INSTRUCTION 3 CF INSTRUCTION 2

cc371
/_/

FIG. 40

rend=6

1:HOST INSTRUCTION OF INSTRUCTION it
2: HELPER FUNCTION 1 CALL INSTRUCTION QF INSTRUCTION i1: PERFORMANCE VALUE=2 <——r_start
J:HOST INSTRUCTION OF INSTRUCTION i2

£; PERFORMANCE COMPUTING INSTRUCTION 1 CF INSTRUCTION 2

5: PERFCRMANCE COMPUTING INSTRUCTION 2 CF INSTRUCTION i2: PERFORMANGE VALUE=1
6: PERFORMANCE COMPUTING INSTRUCTION 3 CF INSTRUCTION 12 < r_end

cc371
f__/

U.S. Patent Oct. 11, 2016 Sheet 35 of 37 US 9,465,595 B2

FIG. 41

sum=2+1=3

1:HOST INSTRUCTION OF INSTRUCTION i1
2: HELPER FUNGTION 1 CALL INSTRUCTION OF INSTRUCTION i1: PERFORMANCE VALUE =2 <——r_start
3 HOST INSTRUCTION OF INSTRUCTION 12

4 PERFORMANCE COMPUTING INSTRUCTION 1 OF INSTRUCTICN
5: PERFORMANCE COMPUTING INSTRUCTION 2 OF INSTRUCTION
6: PERFORMANCE COMPUTING INSTRUCTION 3 OF INSTRUCTION

cc371
/_/

i2: PERFORMANCE VALUE=1

r end

FIG. 42 ;9422

1 HOST INSTRUCTION OF INSTRUCTION i1
2:HOST INSTRUCTION OF INSTRUCTION i2
3 PERFORMANCE COMPUTING INSTRUCTION 10F INSTRUCTICNS 11 AND 12 < r_start
4: PERFORMANCE COMPUTING INSTRUCTION 2 OF INSTRUCTIONS i1 AND 12: PERFORMANCE VALUE=]
5; PERFORMANCE COMPUTING INSTRUCTION 3 OF INSTRUCTIONS i1 AND i2
6:

-« r_end

U.S. Patent Oct. 11, 2016 Sheet 36 of 37 US 9,465,595 B2

FIG. 43

[_J

ACQUIRE COMPUTATIONAL
CODE FOR TARGET BLOCK

¥ 54302

YES 1S CALL
INSTRUCTION LIST
S4304 EMPTY?
) Pamd
DETECT HELPER FUNCTION 1

CALL INSTRUCTION OTHER THAN 54303
HELPER FUNCTION 1 CALL
INSTRUCTION REPRESENTED BY

ADDRESS WITHIN CALL INSTRUCTION | | SET FIRST ADDRESS OF
LIST OF COMPUTATIONAL CODE ADDRESSES WITHIN
CALL INSTRUCTION
\ 54305 LIST AS m_helper
REPLACE DETECTED

HELPER FUNCTION 1 CALL
INSTRUCTION WITH HELPER
FUNCTION 2 CALL INSTRUCTION

(END)

U.S. Patent Oct. 11, 2016 Sheet 37 of 37 US 9,465,595 B2

FIG. 44

S4401

IS INSTRUCTION
IMMEDIATELY BEFORE HELPER FUNCTION 1 CALL
INSTRUCTION REPRESENTED BY m_helper PERFORMANCE

5 COMPUTING INSTRUCTION?
SET m_helper ASr_start |J’84402 /§4/403

SET ADDRESS OF IMMEDIATELY PRECEDING PERFORMANCE
COMPUTING NSTRUCTION AS_start

|

DETECT HELPER FUNCTION 1 CALL INSTRUCTION WHOSE
ADDRESS IS NOT INCLUDED IN CALL INSTRUGTION LIST
FROM INSTRUCTIONS SUBSEQUENT TO HELPER FUNCTION 1
CALL INSTRUCTION REPRESENTED BY m_helper

3

" 54405

54404

DETECTED?

~ 54406

S4407
SETm_heiper ASr_end |) I~

SET ADDRESS REPRESENTING INSTRUCTION IMMEDIATELY BEFCRE
CETECTED HELPER FUNCTION 1 CALL INSTRUCTION AS r_end

g /\/84408
ACQUIRE PERFORMANCE VALUE OF PERFORWANCE COMPUTING INSTRUCTION AND
PERFORMANCE VALUE OF HELPER FUNCTION 1 CALLINSTRUCTION INCLUDED IN INSTRUCTIONS
FROM INSTRUCTION REPRESENTED BY r_start TO INSTRUCTION REPRESENTED BY r_end

)
| CALCULATE TOTAL VALLE

GENERATE INSTRUCTION GROUP INCLUDING HOST INSTRUCTION INCLUDED IN INSTRUCTIONS
FROM INSTRUCTION REPRESENTED BY r_start TO INSTRUCTION REPRESENTED BY _end
AND PERFORMANCE COMPUTING INSTRUCTION FOR ADDITION OF CALCULATED TOTAL YVALUE

] o~ S4411
REPLACE INSTRUCTION GROUP INCLUDED IN INSTRUCTIONS
FROMINSTRUCTION REPRESENTED BY r_start TO INSTRUCTION REPRESENTED
BY r_gnd OF COMPUTATIONAL CODE WITH GENERATED INSTRUCTION GROUP

/\/84412

DELETE ADDRESS REPRESENTING HELPER FUNCTION 1 CALL INSTRUGTION
INCLUDED [N INSTRUCTIONS FROM INSTRUCTION REPRESENTED BY r_start
TOINSTRUCTION REFRESENTED BY r_end FROM CALL INSTRUCTION LIST

US 9,465,595 B2

1

COMPUTING APPARATUS, COMPUTING
METHOD, AND COMPUTING PROGRAM

CROSS-REFERENCE TO RELATED
APPLICATION

This application is based upon and claims the benefit of
priority of the prior Japanese Patent Application No. 2013-
122786, filed on Jun. 11, 2013, the entire contents of which
are incorporated herein by reference.

FIELD

The embodiments discussed herein are related to a com-
puting apparatus, a computing method, and a computing
program.

BACKGROUND

A technique for outputting the operational result of a
cache memory accessible by a central processing unit (CPU)
in the process of a simulation of an operation in which the
CPU executes a program and computing, based on the
operational result, the performance value of the program for
the case where the CPU executes the program, has been
available (see, for example, Japanese Laid-open Patent
Publication No. 2001-249829).

However, in the existing technique, every time an access
instruction for instructing the CPU to access a memory area
is executed during the simulation of the operation, the
operational result of the cache memory is referred to and the
performance value of the program is computed. Accord-
ingly, there is a problem that the amount of computation for
the performance values of access instructions increases.

In an aspect, the embodiments discussed herein aim to
provide a computing apparatus, a computing method, and a
computing program capable of reducing the amount of
computation.

SUMMARY

According to an aspect of the invention,

a computing apparatus that computes a performance value
of a program for a case where the program is executed by a
processor, the program including a specific code which is
executed multiple times by the processor and which includes
an access instruction for instructing the processor to access
a memory area, the computing apparatus includes:

a first determining unit that determines, in a case where
the specific code has become a computing target for a
performance value, whether or not a cache memory acces-
sible by the processor is in an available state for use at a time
of execution of the access instruction in a simulation of an
operation in which the processor executes the program, in
accordance with a direction of the access instruction;

a generating unit that generates, in a case where the first
determining unit has determined that the cache memory is
not in the available state for use, a computational code for
computing the performance value of the specific code for a
case where the processor executes the specific code, based
on performance values of individual instructions within the
specific code for a case where the cache memory is not used,
without depending on an attribute of the memory area; and

an execution unit that executes the generated computa-
tional code in a case where the specific code has become a
new computing target for a performance value.

10

15

20

25

30

35

40

45

50

55

60

65

2

The object and advantages of the invention will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the inven-
tion, as claimed.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is an explanatory diagram illustrating an example
of an operation by a computing apparatus according to an
embodiment;

FIG. 2 is a block diagram illustrating an example of a
hardware configuration of a computing apparatus according
to an embodiment;

FIG. 3 is a block diagram illustrating an example of a
functional configuration of a computing apparatus according
to a first embodiment;

FIG. 4 is a diagram illustrating an example of instructions
included in a block;

FIG. 5 is a diagram illustrating an example of timing
information;

FIGS. 6A and 6B are diagrams illustrating examples of
execution timings of individual instructions of the block
illustrated in FIG. 4;

FIG. 7 is an explanatory diagram illustrating an example
of prediction information;

FIG. 8 is an explanatory diagram illustrating an example
in which a first computational code is generated;

FIG. 9 is a block diagram illustrating an example of a
functional configuration of a code execution unit according
to the first embodiment;

FIG. 10 is an explanatory diagram illustrating an example
of'execution by the code execution unit according to the first
embodiment;

FIG. 11 is an explanatory diagram illustrating an example
in which a second computational code is generated in the
first embodiment;

FIG. 12 is an explanatory diagram illustrating an example
in which a second computational code is generated in a
second embodiment;

FIG. 13 is an explanatory diagram illustrating a detailed
example of helper function 2 concerning a data cache
memory of an Id instruction;

FIGS. 14A to 14D are explanatory diagrams illustrating
examples of a correction made by a correcting part to an
execution result of an Id instruction;

FIGS. 15A to 15D are charts illustrating examples of a
correction made by the correcting part to an execution result
of an Id instruction;

FIGS. 16A to 16D are charts illustrating examples of a
correction made by the correcting part to an execution result
of an Id instruction;

FIG. 17 is a flowchart illustrating an example of a
computing processing procedure by the computing appara-
tus according to the first and second embodiments;

FIG. 18 is a flowchart illustrating a generation process
illustrated in FIG. 17 according to the first and second
embodiments in more detail;

FIG. 19 is a flowchart illustrating a code optimizing
process illustrated in FIG. 17 according to the first and
second embodiments in more detail;

FIG. 20 is a flowchart illustrating an example of a
computing processing procedure according to a helper func-
tion 1 concerning the data cache memory by the computing
apparatus according to the first embodiment;

US 9,465,595 B2

3

FIG. 21 is a flowchart illustrating an example of a
computing processing procedure according to a helper func-
tion 2 concerning the data cache memory by the computing
apparatus according to the first embodiment;

FIG. 22 is a block diagram illustrating an example of a
functional configuration of a computing apparatus according
to a third embodiment;

FIG. 23 is an explanatory diagram illustrating generation
example 1 of a computational code concerning a data cache
memory according to the third embodiment;

FIG. 24 is an explanatory diagram illustrating generation
example 2 of a computational code concerning a TLB
according to the third embodiment;

FIG. 25 is a flowchart illustrating the generation process
illustrated in FIG. 17 according to the third embodiment in
more detail;

FIG. 26 is a flowchart illustrating the code optimization
process illustrated in FIG. 17 according to the third embodi-
ment in more detail;

FIG. 27 is an explanatory diagram illustrating an execu-
tion example by a code execution unit according to a fourth
embodiment;

FIG. 28 is a flowchart illustrating an example of a
computing processing procedure according to a helper func-
tion 1 concerning a TLB by a computing apparatus accord-
ing to the fourth embodiment;

FIG. 29 is a flowchart illustrating an example of a
computing processing procedure according to a helper func-
tion 2 concerning the TLB by the computing apparatus
according to the fourth embodiment;

FIG. 30 is an explanatory diagram illustrating an example
of code optimization by a computing apparatus according to
a fifth embodiment;

FIG. 31 is a block diagram illustrating a detailed example
of a code optimization unit;

FIG. 32 is an explanatory diagram (part 1) illustrating
detailed operation example 1 by the code optimization unit;

FIG. 33 is an explanatory diagram (part 2) illustrating
detailed operation example 1 by the code optimization unit;

FIG. 34 is an explanatory diagram (part 3) illustrating
detailed operation example 1 by the code optimization unit;

FIG. 35 is an explanatory diagram (part 4) illustrating
detailed operation example 1 by the code optimization unit;

FIG. 36 is an explanatory diagram (part 5) illustrating
detailed operation example 1 by the code optimization unit;

FIG. 37 is an explanatory diagram (part 1) illustrating
detailed operation example 2 by the code optimization unit;

FIG. 38 is an explanatory diagram (part 2) illustrating
detailed operation example 2 by the code optimization unit;

FIG. 39 is an explanatory diagram (part 3) illustrating
detailed operation example 2 by the code optimization unit;

FIG. 40 is an explanatory diagram (part 4) illustrating
detailed operation example 2 by the code optimization unit;

FIG. 41 is an explanatory diagram (part 5) illustrating
detailed operation example 2 by the code optimization unit;

FIG. 42 is an explanatory diagram (part 6) illustrating
detailed operation example 2 by the code optimization unit;

FIG. 43 is a flowchart (part 1) illustrating the code
optimization process illustrated in FIG. 17 in more detail;
and

FIG. 44 is a flowchart (part 2) illustrating the code
optimization process illustrated in FIG. 17 in more detail.

DESCRIPTION OF EMBODIMENTS

In embodiments, a simulation of function and perfor-
mance in the case where a first processor which is to be

10

20

25

30

35

40

45

50

55

60

65

4

evaluated executes a target program is performed by a
second processor included in a computing apparatus. As a
technique for converting the target program of the first
processor into a code which may be executed by the second
processor when the second processor performs a simulation
of function and performance, for example, an interpreter
method or a just-in-time (JIT) compiler method may be
used. A computing apparatus according to the embodiments
performs a simulation of performance by the JIT complier
method. The first processor is referred to as a target CPU,
and the second processor is referred to as a host CPU.

Hereinafter, with reference to the illustrations provided, a
computing apparatus, a computing method, and a computing
program according to embodiments will be explained in
detail.

FIG. 1 is an explanatory diagram illustrating an example
of an operation by a computing apparatus according to an
embodiment. A computing apparatus 100 is a computer
which computes a performance value of a target program pgr
in the case where a target CPU 101 executes the target
program pgr. Here, a performance value represents the
number of cycles and an execution time. A processor
included in the computing apparatus 100 is referred to as a
host CPU. Here, each code split from the target program pgr
is referred to as a block. The target program pgr includes a
block bt which includes an access instruction for instructing
the target CPU 101 to access a memory area A within a
memory 103 and which is executed multiple times by the
target CPU. An access instruction is, for example, an Id
(load) instruction or an st (store) instruction. Here, for
example, the block bt includes an instruction il and an
instruction i2. The instruction i2 is an access instruction for
instructing the target CPU 101 to access the memory area A
within the memory 103.

Furthermore, the computing apparatus 100 executes an
operation simulation sim, which is a simulation of an
operation of the case in which the target CPU 101 executes
the target program pgr. The operation simulation sim here is,
for example, a simulation for providing the target program
pgr to a model of a system including the target CPU 101 and
hardware resources that the target CPU 101 may access. In
the example provided in FIG. 1, hardware resources include
a cache memory 102 and a memory 103. A model of a
system used in this embodiment is, for example, a behavior
model reproducing only the function of a system by hard-
ware description language or the like. Here, the timing to
execute each block bt of the operation simulation sim is the
same as the timing to execute a computational code cc11 for
computing the performance value of the block bt. Here, for
example, the target CPU 101 is a CPU of ARM® architec-
ture, and the host CPU included in the computing apparatus
100 is, for example, a CPU of x86 architecture.

In the case where the block bt becomes a computing
target, the computing apparatus 100 generates the compu-
tational code ccl11. The computational code cc11 includes a
functional code fc1 and a performance evaluation code pcl.
The functional code fcl includes host instructions of indi-
vidual instructions within the block bt obtained by compil-
ing the block bt. The performance evaluation code pcl
includes an instruction for computing the performance value
of'the block bt in the case where the target CPU 101 executes
the block bt using the performance value of each instruction
within the block bt based on an attribute of the cache
memory 102 accessible by the target CPU 101. More
specifically, the performance evaluation code pcl includes a
performance computing instruction, which is a first instruc-
tion of the instruction il, and a helper function 1 call

US 9,465,595 B2

5

instruction, which is a second instruction of the instruction
i2. The performance computing instruction of the instruction
il is an instruction for instructing the target CPU 101 to add
the performance value of the instruction il to the perfor-
mance value of the block bt. The helper function 1 call
instruction of the instruction i2 is an instruction for calling
a helper function 1 which corrects the performance value of
the instruction i2 according to the attribute of the memory
area A at the time of execution of the instruction i2 in the
operation simulation sim and the operational result of the
cache memory 102. Furthermore, the helper function 1 call
instruction of the instruction i2 is an instruction for adding
the performance value output by the execution of the helper
function 1 to the performance value of the block bt.

The computing apparatus 100 then executes the compu-
tational code cl1. Here, the computing apparatus 100 per-
forms a simulation of a function by executing the functional
code fc1 within the computational code all. Furthermore, the
computing apparatus 100 performs a simulation of a per-
formance by executing the performance evaluation code pcl
within the computational code all. After executing the helper
function 1 call instruction of the instruction i2 within the
computational code all, the computing apparatus 100 calls
the helper function 1. Next, the computing apparatus 100
executes the helper function 1 which has been called out.
The computing apparatus 100 determines, according to the
helper function 1, whether or not the attribute of the memory
area A at the time of execution of the instruction i2 in the
operation simulation sim is an attribute which indicates that
the target CPU 101 is able to use the cache memory 102. For
example, in the case where the target CPU 101 is an ARM
processor, it is assumed that the attribute of the memory area
A represents values of TEX, B, and C bits set on a page table
entry for the memory area A. For example, when all the
values of TEX, B, and C bits are 1, the computing apparatus
100 determines that the attribute of the memory area A is an
attribute which indicates that the cache memory 102 is
available for use. Furthermore, when either one of the values
of TEX, B, and C bits is not 1, the computing apparatus 100
determines that the attribute of the memory area A is not an
attribute which indicates that the cache memory 102 is
available for use.

In the case where the computing apparatus 100 has
determined that the attribute indicates that the cache
memory 102 is available for use, the computing apparatus
100 corrects, based on the operational result of the cache
memory 102 in the operation simulation sim, the perfor-
mance value, and adds the corrected performance value to
the performance value of the block bt. The operational result
of the cache memory 102 is either one of a cache hit and a
miss hit.

In the case where the computing apparatus 100 has
determined that the attribute does not indicate that the cache
memory 102 is available for use, the computing apparatus
100 makes a correction to a performance value for the case
where the cache memory 102 is not used, and adds the
corrected performance value to the performance value of the
block bt. Then, the computing apparatus 100 executes the
computational code ccll in the case where the block bt
becomes a new computing target for a performance value.

In the case where the computing apparatus 100 has
determined that the attribute does not indicate that the cache
memory 102 is available for use, the computing apparatus
100 generates a computational code ccl2. The computa-
tional code ccl2 is a code for computing the performance
value of the block bt for the case where the target CPU 101
executes the block bt, based on performance values of

20

25

30

40

45

6

individual instructions within the block bt for the case where
the cache memory 102 is not used, without depending on the
attribute. More specifically, the computing apparatus 100
replaces the helper function 1 call instruction of the instruc-
tion 12 with a performance computing instruction for adding
the performance value of the instruction i2 for the case
where the cache memory 102 is not used to the performance
value of the block bt. Accordingly, the computing apparatus
100 generates the computational code cc12 which includes
a performance evaluation code pcl which includes a per-
formance computing instruction of the instruction i2. In the
case where the block bt becomes a new computing target for
a performance value, the computing apparatus 100 executes
the generated computational code ccl2. Accordingly, the
amount of computation for the case where the block bt
becomes a new computing target may be reduced.
Example of Hardware Configuration of Computing Appa-
ratus 100

FIG. 2 is a block diagram illustrating an example of a
hardware configuration of a computing apparatus according
to an embodiment. The computing apparatus 100 includes a
host CPU 201, a read only memory (ROM) 202, a RAM 203,
a disk drive 204, and a disk 205. The computing apparatus
100 also includes an interface (I/F) 206, an input device 207,
and an output device 208. Furthermore, the individual
components are connected by a bus 200.

Here, the host CPU 201 controls the entire computing
apparatus 100. The ROM 202 stores programs such as a boot
program. The RAM 203 is a memory unit used as a work
area for the host CPU 201. The disk drive 204 controls the
reading/writing of data from/to the disk 205 under the
control of the host CPU 201. The disk 205 stores data written
under the control of the disk drive 204. The disk 205 may be
a magnetic disk, an optical disk, or the like.

The I/F 206 is connected to a network NET, such as a
local area network (LAN), a wide area network (WAN), or
the Internet, through a communication line and is connected
to a different apparatus via the network NET. Furthermore,
the I/F 206 serves as an interface with the network NET, and
controls the input/output of data to/from an external appa-
ratus. The I/F 206 may be, for example, a modem or a LAN
adapter.

The input device 207 is an interface, such as a keyboard,
a mouse, or a touch panel, for inputting various data based
on a user operation. Furthermore, the input device 207 may
also capture images and moving images from a camera.
Moreover, the input device 207 may also capture sound from
a microphone. The output device 208 is an interface for
outputting data in accordance with an instruction from the
host CPU 201. The output device 208 may be, for example,
a display monitor or a printer.

The embodiments will be described separately as first to
fifth embodiments. In the first embodiment, in a simulation
of an operation of a block including an access instruction, in
the case where an access destination of the access instruction
is not able to use a cache memory, a computational code for
computing a performance value of the block based on the
assumption that the cache memory is not used, is generated.

In the second embodiment, in the case where an access
instruction within a target block is able to use a cache
memory, a computational code for computing a performance
value of the block by correcting the performance value
based on an operation of the cache memory, without depend-
ing on an attribute of a memory area, is generated.

In the third embodiment, during the period of time in
which a cache memory is shifted from an unavailable state
for use to an available state for use, a computational code for

US 9,465,595 B2

7

computing a performance value of a target block based on a
performance value of an access instruction for the case
where the cache memory is not used, is executed. Further-
more, in the third embodiment, during the period of time in
which a translation lookaside buffer (TLB) is shifted from an
unavailable state for use to an available state for use, a
computational code for computing a performance value of a
target block based on a performance value of an access
instruction for the case where the TLB is not used, is
executed.

In the fourth embodiment, in the case where an operation
mode of a target CPU at the time when an access instruction
in a simulation of an operation is being executed is a
privileged mode, a computational code for computing the
performance value of a target block, based on performance
values of individual instructions of the target block for the
case where there is a hit in a TLB, is generated.

In the fifth embodiment, in replacing a helper function 1
call instruction with a performance computing instruction in
the first to fourth embodiments, consecutive performance
computing instructions are integrated into one performance
computing instruction.

First Embodiment

A memory address space includes an area in which a data
cache memory is available for use and an area in which a
data cache memory is unavailable for use. For example, an
area in which a device is mapped or the like, is an area in
which a data cache memory is unavailable for use. There-
fore, the performance value of an access instruction for
access to an area in which a data cache memory is unavail-
able for use is stable. Thus, in the first embodiment, in a
simulation of an operation of a block including an access
instruction, in the case where an access destination of the
access instruction is not able to use a cache memory, a
computational code for computing a performance value of
the block based on the assumption that the cache memory is
not used, is generated. Accordingly, the amount of compu-
tation when the block becomes a target again may be
reduced.

Example of Functional Configuration of Computing Appa-
ratus 100 According to First Embodiment

FIG. 3 is a block diagram illustrating an example of a
functional configuration of a computing apparatus according
to the first embodiment. The computing apparatus 100
includes a code converting unit 301, a code execution unit
302, a code optimization unit 303, and a simulation infor-
mation collecting unit 304.

Processing from the code converting unit 301 to the
simulation information collecting unit 304, for example, is
coded on a simulation program stored in a memory device,
such as the disk 205, which is accessible by the host CPU
201. The host CPU 201 reads a computing program stored
in the memory device, and executes processing coded on the
computing program. Accordingly, the processing from the
code converting unit 301 to the simulation information
collecting unit 304 is implemented. Furthermore, the pro-
cessing result of each unit is stored, for example, in the
memory device such as the RAM 203 or the disk 205.

Furthermore, timing information 320, the target program
pgt, and prediction information 321 are obtained in advance,
and is stored in the memory device such as the RAM 203 or
the disk 205.

The code converting unit 301 generates a computational
code with which a performance value for the case where a
target block is executed by the target CPU 101 may be

10

25

30

40

45

55

8

calculated based on the performance value of each instruc-
tion of the target block. The code execution unit 302
calculates, by executing the computational code, the perfor-
mance value for the case where the target block is executed
by the target CPU 101.

More specifically, the code converting unit 301 includes
a block dividing part 311, a determining part 312, a predic-
tion simulation execution part 313, and a code generating
part 314.

The block dividing part 311 divides the target program pgr
input to the computing apparatus 100 into blocks according
to predetermined criteria. Regarding the timing for division,
for example, in the case where a target block has changed,
a new target block may be divided or the target program pgr
may be divided into a plurality of blocks beforehand. A unit
of a divided block may, for example, be a basic block unit,
or any predetermined code unit. The basic block unit is an
instruction group of instructions starting from a branching
instruction up to but not including the next branching
instruction.

FIG. 4 is a diagram illustrating an example of instructions
included in a block. As illustrated in FIG. 4, it is assumed
that, in a block b within the target program pgr, three
instructions: (1) “Id [r1], r2” (load); (2) “mult r3, r4, r5”
(multiplication); and (3) “add r2, r5, r6” (addition), are
included, which are input to the pipeline of the target CPU
101 and executed in the order of (1) to (3). For the individual
instructions, rl to r6 each represent a register (address).
Hereinafter, blocks and target blocks will all have a refer-
ence sign b, even when they are not the same as the block
illustrated in FIG. 4.

FIG. 5 is a diagram illustrating an example of timing
information. The timing information 320 illustrated in FIG.
5 indicates that, for the Id instruction, a source register rsl
(rl) is available for use in the first processing element (el)
and a destination register rd (r2) is available for use in the
second processing element (e2). Furthermore, the timing
information 320 indicates that, for the mult instruction, a
first source register rs1 (r3) is available for use in the first
processing element (el), a second source register rs2 (r4) is
available for use in the second processing element (e2), and
a destination register rd (r5) is available for use in the third
processing element (e3). Moreover, the target information
320 indicates that, for the add instruction, the first source
register rs1 (r2) and the second source register rs2 (r5) are
available for use in the first processing element (el) and a
destination register rd (r6) is available for use in the second
processing element (e2).

FIGS. 6A and 6B are diagrams illustrating examples of
execution timings of the individual instructions of the block
illustrated in FIG. 4. Referring to the timing information 320
illustrated in FIG. 5, the timings at which the instructions are
input to the pipeline are, assuming the execution start of the
Id instruction as a timing t, the mult instruction is input at a
timing t+1, and the add instruction is input at a timing t+2.
The first source register (r2) and the second source register
(r5) of the add instruction are being used in the Id instruction
and the mult instruction. Therefore, the add instruction starts
at or after a timing t+4, by when the execution of the Id
instruction and the mult instruction is completed, thereby
generating a latency corresponding to two cycles (a stall
corresponding to two cycles).

Therefore, as is clear from FIG. 6 A, when a simulation of
the block b illustrated in FIG. 4 is performed, in the case
where the operational result of the cache memory for the
case where the Id instruction is executed is a cache hit, the
execution time of the block b is 6 cycles. Here, the opera-

US 9,465,595 B2

9

tional result of the target CPU 101 and the hardware
resources obtained when an externally dependent instruction
is executed will be referred to as an execution result of the
externally dependent instruction. The externally dependent
instruction is an instruction with which the operation of the
target CPU or the hardware resources accessible by the
target CPU is one of a plurality of operations in the case
where the target CPU 101 executes the externally dependent
instruction. For example, the externally dependent instruc-
tion may be the Id instruction, the st instruction, or the
branching instruction. FIG. 6B illustrates a timing example
in a case in which the execution result of the Id instruction
of the block b illustrated in FIG. 4 is a cache miss. When the
result of the Id instruction is a cache miss, since an arbitrary
time (corresponding to 6 cycles here) that is considered as
being sufficient for re-execution is set in the timing infor-
mation 320 as a penalty, the penalty cycle is added as the
delay time. Therefore, the execution of the second process-
ing element (e2) is delayed to a timing t+7. The mult
instruction which is to be executed after the Id instruction is
executed on time without being affected by the delay.
However, the add instruction comes at or after a timing t+8,
by when the execution of the Id instruction is completed,
thereby generating a latency corresponding to four cycles (a
stall corresponding to four cycles).

Therefore, as is clear from FIG. 6B, when the execution
the instructions of the block b illustrated in FIG. 4 is
simulated, in the case in which the execution result of the Id
instruction is a cache miss, the execution time is 10 cycles.

FIG. 7 is an explanatory diagram illustrating an example
of prediction information. The prediction information 321 is
information that defines a result that has a high occurrence
probability amongst the operational results of the target CPU
101 and the hardware resources accessible by the target CPU
101 in the case where the target CPU 101 executes an
externally dependent instruction within the target program
pgr. This operational result will be referred to as a prediction
case.

Furthermore, for example, the hardware resources which
may be accessed by the target CPU 101 include an instruc-
tion cache memory, a data cache memory, and a TLB within
a memory management unit (MMU). The instruction cache
memory is a memory in which highly frequently used
instructions are temporarily stored. The data cache memory
is a memory in which highly frequently used data are
temporarily stored. The TLB is a memory in which highly
frequently used conversion information is temporarily
stored. The conversion information is information for con-
version of a logical address and a physical address. For
example, when executing an access instruction for access to
a memory area, such as an Id instruction or an st instruction,
the target CPU 101 uses the data cache memory, the TLB, or
the like. For example, the block b illustrated in FIG. 4
includes an Id instruction, and regarding the Id instruction,
the prediction case of the data cache is a “cache hit”, and the
prediction case of the TLB search is a “TLB hit”.

The determining part 312 determines whether or not
compiling of the target block b has been completed. The
determining part 312, for example, is able to make a
determination of a block that becomes the next computing
target according to the execution result of a performance
simulation or the execution result of an operation simulation
sim. More specifically, the determining part 312 determines
whether or not there is a computational code associated with
the target block b. In the case where there is a computational
code associated with the target block b, the determining part
312 determines that the compiling of the target block b has

10

15

20

25

30

35

40

45

50

55

60

65

10

been completed. In the case where there is no computational
code associated with the target block b, the determining part
312 determines that the compiling of the target block b has
not been completed.

In the case where it has been determined that the target
block b has not previously been a computing target, the
prediction simulation execution part 313 sets a prediction
case for an externally dependent instruction included in the
target block b based on the prediction information 321.
Then, the prediction simulation execution part 313 simulates
the progress of the execution of each instruction within the
block b based on the assumption of the prediction case by
referring to the timing information 320. Accordingly, the
prediction simulation execution part 313 obtains the perfor-
mance value of each instruction within the block b based on
the assumption of the set prediction case.

The code generating part 314 generates, based on the
prediction simulation result, a first computational code for
computing the performance value of the target block b for
the case where the target CPU 101 executes the target block
b. The first computational code generated, for example, is
associated with the target block b and stored in the memory
device such as the RAM 203 or the disk 205.

FIG. 8 is an explanatory diagram illustrating an example
in which a first computational code is generated. The code
generating part 314 generates a functional code by compil-
ing of the target block b. Furthermore, the code generating
part 314 generates a performance computing instruction for
adding the performance value of each instruction within the
target block b obtained by prediction simulation to the
performance value of the target block b. Furthermore, the
code generating part 314 generates a helper function 1 call
instruction for calling a helper function 1 for an externally
dependent instruction. The helper function 1 call instruction
is an instruction for calling a helper function 1 and adding
a performance value output by processing according to the
helper function 1 to the performance value of the target
block b. The processing according the helper function 1 in
the first embodiment is processing for correcting the per-
formance value of an access instruction according to an
attribute of a memory area of an access destination directed
by the access instruction and operation of a cache memory
and outputting the corrected performance value.

Furthermore, for an externally dependent instruction
which is different from an access instruction, the code
generating part 314 generates a helper function for directing
processing of correcting the performance value of the exter-
nally dependent instruction for the case of the prediction
case based on whether or not the execution result of the
externally dependent instruction matches the prediction
case. The code generating part 314 then generates the first
computational code by adding a performance evaluation
code including the performance computing instruction and
the helper function 1 call instruction generated to a func-
tional code. The generated first computational code is asso-
ciated with the target block b and stored in the memory
device such as the RAM 203 or the disk 205. The code
execution unit 302 executes a performance simulation for
computing the performance value of the target block b by
executing the first computational code.

FIG. 9 is a block diagram illustrating an example of a
functional configuration of the code execution unit accord-
ing to the first embodiment. The code execution unit 302
includes an execution part 901, a first determining part 902,
a second determining part 903, an output part 904, and a
correcting part 905. Processing of the first determining part
902, the second determining part 903, the output part 904,

US 9,465,595 B2

11

and the correcting part 905 is coded on a helper function 1
stored in the memory device, such as the disk 205, accessible
by the host CPU 201. The host CPU 201 reads the helper
function 1 stored in the memory device, and executes the
processing coded on the helper function 1. Accordingly, the
processing of the first determining part 902, the second
determining part 903, the output part 904, and the correcting
part 905 is implemented. Furthermore, the processing result
of each part is, for example, stored in the memory device
such as the RAM 203 or the disk 205.

FIG. 10 is an explanatory diagram illustrating an example
of execution by the code execution unit according to the first
embodiment. For example, the code execution unit 302
executes instructions included in a first computational code
cc101 in order. For example, the execution part 901 executes
a helper function 1 call instruction for a data cache memory
1001 of an Id instruction, calls a helper function 1, and then
executes processing directed by the helper function 1.
Accordingly, processing from the first determining part 902
to the correcting part 905 is executed. The data cache
memory 1001 is provided as an example of the cache
memory. However, a similar processing is performed also in
the case where the cache memory is an instruction cache
memory.

In the example of FIG. 10, the first determining part 902
determines whether or not the cache memory is in an
available state for use at the time of execution of the target
block b in the simulation sim of an operation in which the
target CPU 101 executes the target program pgr. For
example, in the case where the target CPU 101 is an ARM
processor, in an operation at the time of execution of the
target block b in the operation simulation sim, the first
determining part 902 detects a C-bit value of a system
control register SCTRL. Then, the first determining part 902
determines whether the C-bit value of the system control
register SCTRL is 0 or 1. The first determining part 902
determines that the data cache memory 1001 is not in an
available state for use in the case where the C-bit value of
the system control register SCTRL is 0. The first determin-
ing part 902 determines that the data cache memory 1001 is
in an available state for use in the case where the C-bit value
of the system control register SCTRL is 1.

In the case where it has been determined that the data
cache memory 1001 is in the available state for use, the
second determining part 903 determines an attribute of an
access destination at the time of execution of an access
instruction in the operation simulation sim. More specifi-
cally, the second determining part 903 determines whether
the attribute indicates that the data cache memory 1001 is
available for use. The second determining part 903 detects
the values of the TEX, B, and C bits set on the page table
entry for the access destination at the time of execution of
the access instruction in the operation simulation sim, as the
attribute of the access destination. For example, in the case
where the target CPU 101 is an ARM processor, the second
determining part 903 detects the values of the TEX, B and
C bits set on the page table entry within the TLB regarding
the access destination at the time of execution of the Id
instruction in the operation simulation sim.

The second determining part 903 determines that the
attribute of the access destination is an attribute which
indicates that the data cache memory 1001 is available for
use in the case where all the detected values of the TEX, B,
and C bits are 1. Furthermore, the second determining part
903 determines that the attribute of the access destination is
not an attribute which indicates that the data cache memory

10

15

20

25

30

35

40

45

50

55

60

65

12

1001 is available for use in the case where either one of the
detected values of the TEX, B, and C bits is not 1.

In the case where it has been determined that the data
cache memory 1001 is unavailable for use, the output part
904 outputs the address of the memory area in which the
helper function 1 call instruction, which is a callout source,
is stored to a call instruction list I._helper.

In the case where it has been determined that the attribute
does not indicate that the data cache memory 1001 is
available for use, when the prediction case is a “cache hit”,
the correcting part 905 corrects the performance value
obtained by the prediction simulation to a performance value
for the case of a “miss hit”. Then, the correcting part 905
outputs the corrected performance value. In the case where
it has been determined that the attribute does not indicated
that the data cache memory 1001 is available for use, when
the prediction case is a “miss hit”, the correcting part 905
outputs the performance value of the access instruction
obtained by the prediction simulation, without making a
correction. In the above described example, the prediction
case is a “cache hit”. Therefore, the correcting part 905, for
example, adds the value of penalty included in the timing
information 320 to the performance value of the Id instruc-
tion.

In the case where it has been determined that the attribute
indicates that the data cache memory 1001 is available for
use, the correcting part 905 determines whether or not the
operation of the data cache memory 1001 in the operation
simulation sim matches the prediction case. In the case
where the operation of the data cache memory 1001 matches
the prediction case, the correcting part 905 outputs the
performance value obtained by the prediction simulation,
without making a correction. In the case where the operation
of the data cache memory 1001 does not match the predic-
tion case, the correcting part 905 corrects the performance
value obtained by the prediction simulation and outputs the
corrected performance value. Here, the prediction case is a
“cache hit”. Therefore, the correcting part 905 determines
whether or not the operational result of the data cache
memory 1001 in the operation simulation sim is a “cache
miss”. If the operational result is a “cache miss”, the
correcting part 905 adds the value of penalty within the
timing information 320 to the performance value of the Id
instruction. A detailed example of correcting processing by
the correcting part 905 will be provided in the second
embodiment.

In the case where it has been determined that the data
cache memory 1001 is unavailable for use, the code opti-
mization unit 303 generates a second computational code.
The second computational code is a code for computing the
performance value of the target block b for the case where
the host CPU 201 executes the target block b, based on the
performance value of each instruction within the target
block b for the case where the data cache memory 1001 is
not used, without depending on the attribute of the memory
area.

FIG. 11 is an explanatory diagram illustrating an example
in which the second computational code is generated in the
first embodiment. Specifically, the code optimization unit
303 replaces the helper function 1 call instruction indicated
by the address within the call instruction list L._helper in the
first computational code cc101 with a performance comput-
ing instruction for adding the performance value of the Id
instruction for the case of a “cache miss”. Accordingly, the
code optimization unit 303 generates a second computa-
tional code cc112. The generated second computational code
ccl12 is associated with the target block b and stored in the

US 9,465,595 B2

13
memory device such as the RAM 203 or the disk 205.
Furthermore, the first computational code previously asso-
ciated with the target block b is deleted when the second
computational code ccl12 is newly associated with the
target block b.

Furthermore, in the case where the block b newly
becomes the target block b, the determining part 312 deter-
mines that the target block b has been a computing target
before. Then, the code execution unit 302 executes the
performance simulation which computes the performance
value of the target block b by executing the second compu-
tational code c112. As described above, the processing from
the first determining part 902 to the correcting part 905
included in the code execution unit 302 is coded on the
helper function 1. Therefore, during the execution of the
second computational code ccl112 on which the helper
function 1 call instruction is not coded, the processing from
the first determining part 902 to the correcting part 905 is not
executed. Accordingly, a performance value in the case
where a target block b which includes an access instruction
becomes a new computing target may be computed more
quickly.

Furthermore, the simulation information collecting unit
304 collects the computing result of the performance value
of each block b and computes the performance value of the
target program pgr for the case where the target CPU 101
executes the target program pgr.

Second Embodiment

In the second embodiment, in the case where a cache
memory is available for use by an access instruction in a
block b, the computing apparatus generates a computational
code for computing the performance value of the block b by
correcting the performance value according to an operation
of the cache memory, without depending on an attribute of
a memory area. Accordingly, since a determination as to the
attribute of the memory area is not performed when the
block b becomes a new computing target, the amount of
computation for the performance value may be reduced. In
the second embodiment, detailed explanations for the same
functions and configurations as those described in the first
embodiment will be omitted. In the second embodiment, as
with the first embodiment, the data cache memory 1001 is
given as an example. However, an instruction cache memory
may be used instead.

First, when it has been determined that information indi-
cates that the data cache memory 1001 is available for use,
the code optimization unit 303 generates a second compu-
tational code. The second computational code is a code
executable by the host CPU 201, and is a code for computing
the performance value of the target block b based on a
performance value of each instruction in a target block for
the case where the data cache memory 1001 is used, without
depending on the attribute of the memory area. The gener-
ated second computational code is associated with the target
block b, and is stored in the memory device such as the
RAM 203 or the disk 205. Furthermore, the first computa-
tional code previously associated with the target block b is
deleted when the second computational code is newly asso-
ciated with the target block b.

FIG. 12 is an explanatory diagram illustrating an example
in which a second computational code is generated in the
second embodiment. Specifically, the code optimization unit
303 detects, among the helper function 1 call instructions
within the first computational code cc101, a helper function
1 call instruction other than helper function 1 call instruc-

20

25

30

40

45

50

14

tions that are indicated by an address within a call instruction
list L_helper. Then, the code optimization unit 303 replaces
the detected helper function 1 call instruction with a helper
function 2 call instruction to generate a second computa-
tional code cc123. The helper function 2 call instruction is
an instruction for calling a helper function 2 and adding a
performance value output by processing according to the
helper function 2 to the performance value of the target
block b. Here, in the second embodiment, for easier under-
standing, a description is given on the assumption that the
helper function 1 call instruction included in the first com-
putational code cc101 is only concerned with a data cache.
The helper function 2 is a function which does not include
an instruction for processing for detecting an attribute of the
memory area of an access destination of an access instruc-
tion included in the helper function 1 and processing for
determining whether or not the data cache memory 1001 is
available for use. Specifically, processing of the correcting
part 905 has been coded on the helper function 2.

Accordingly, when the target block b becomes a new
computing target, processing for determining an attribute of
the access destination of an access instruction for which it
has been determined that the data cache memory 1001 is
available for use, is not performed. Thus, the amount of
computation for a performance value may be reduced, and
the performance value of the target program pgr may be
computed more quickly.

FIG. 13 is an explanatory diagram illustrating a detailed
example of the helper function 2 concerning a data cache
memory of an Id instruction. The helper function 2 “cac-
he_Id (address, rep_delay, pre_delay)” call instruction is
integrated in the second computational code cc123.

In the helper function 2, “rep_delay” represents a time
(grace time) that is not processed as a delay time during a
penalty time until the execution of the next instruction which
uses a return value of the load (Id) instruction. In the helper
function 2, “pre_delay” represents a delay time received
from the immediately preceding instruction. In the helper
function 2, “~1” indicates that there is no delay in the
preceding instruction. Further, “rep_delay” and “pre_delay”
represent time information that may be obtained from a
result of static analysis processing of a performance simu-
lation result acquired by the prediction simulation execution
part 313 and the timing information 320.

In the example illustrated in FIG. 13, when the difference
between the current timing “current_time” and an execution
timing “preld_time”, which is the execution timing of the
immediately preceding Id instruction, exceeds the delay
time “pre_delay”, which corresponds to the delay time of the
immediately preceding Id instruction, the correcting part
905 adjusts the delay time “pre_delay” between the time
“preld_time”, which is the execution timing of the imme-
diately preceding Id instruction, and the current timing
“current_time,” and obtains a valid delay time “avail_de-
lay.”

When the operational result of the data cache memory
1001 is a “cache miss,” since there is an error in the
prediction case, the correcting part 905 adds a penalty time
“cache_miss_latency”, which is a penalty time for the case
of a cache miss, to the valid delay time “avail_delay,” and
corrects the performance value of the Id instruction, based
on the grace time “rep_delay.”

FIGS. 14A to 14D, 15A to 15D, and 16 A to 16D illustrate
examples of a correction made by the correcting part to an
execution result of an Id instruction. FIGS. 14A to 14D are
explanatory diagrams illustrating examples of a correction
made by the correcting part to an execution result of an Id

US 9,465,595 B2

15
instruction. With reference to FIGS. 14A to 14D, examples
of a correction made in the case where a single cache miss
occurs with the execution of a single cache processing
operation will be described.

In the examples in FIGS. 14A to 14D, a simulation of the
following three instructions is performed:

“Id [r1], r2: [r1]—12;

mult 13, rd, r5: r3%rd—r5;

add r2, 15, 16: r2+r5—=r6”"

FIG. 14A is a chart illustrating an example of instruction
execution timings in the case where a prediction case is a
“cache hit.” In this prediction case, a 2-cycle stall occurs for
an add instruction which is executed thirdly. FIG. 14B is a
chart illustrating an example of instruction execution tim-
ings in the case of a “cache miss,” which is different from the
prediction case. In this execution result, which is different
from the prediction case, when the execution result of an Id
instruction is a cache miss, a delay for the period of a penalty
cycle (6 cycles) occurs. Although a mult instruction is
executed without being affected by the delay, since the add
instruction is not executed until the Id instruction is com-
pleted, a delay for the period of 4 cycles occurs. FIG. 14C
is a chart illustrating an example of instruction execution
timings after correction by the correcting part 905.

Since the execution result of the Id instruction is a cache
miss (the execution result is different from the prediction
case), the correcting part 905 adds a predetermined penalty
time (6 cycles) for the case of a cache miss to the remaining
execution time (2-1=1 cycle) to obtain a valid delay time (7
cycles). The valid delay time is the longest delay time.
Further, the correcting part 905 obtains an execution time (3
cycles) of the next mult instruction, determines that the
execution time of the next instruction does not exceed the
delay time, and subtracts the execution time of the next
instruction from the valid delay time (7-3=4 cycles) to
obtain the delayed execution time (delay time) of the Id
instruction. Furthermore, the correcting part 905 defines the
time (3 cycles) obtained by subtracting the above-mentioned
delay time from the valid delay time as a grace time. The
grace time is a time for which a delay as a penalty is waived.
The correcting part 905, with the helper function 2 “cac-
he_Id (address, rep_delay, pre_delay),” returns the grace
time “rep_delay=3" and the delay time of the preceding
instruction “pre_delay=-1" (no delay).

With this correction, the execution time of an Id instruc-
tion becomes the sum of the executed time and the delay
time (1+4=5 cycles), and execution times of the subsequent
mult instruction and add instruction are calculated based on
a timing t, at which execution is completed. In other words,
by simply adding respective execution times of the multi
instruction and add instruction (3 cycles and 3 cycles),
obtained from the processing result of the prediction simu-
lation execution part 313 (result of the prediction simulation
by the prediction result), to the corrected execution time (5
cycles) of the Id instruction, the execution time (the number
of cycles) of the block b may be obtained.

Accordingly, by performing correction processing
through addition or subtraction of the execution time of only
an instruction whose execution result is different from the
prediction, and as for other instructions, by adding the
execution time obtained by a simulation based on the
prediction result, the number of execution cycles in the
simulation for the case of a cache miss may be obtained with
high accuracy.

FIG. 14D is a chart illustrating, for comparison with the
processing by the computing apparatus 100, the magnitude
of error generated when the number of cycles at the time of

20

25

40

45

55

16

a cache miss is obtained by a simple addition according to
related art. In the case of FIG. 14D, the delay time of an Id
instruction is added directly. Therefore, in reality, an error
occurs by a timing deviation in execution of the mult
instruction which is completed during the execution of the Id
instruction.

FIG. 15A to 15D are charts illustrating correction
examples of a correction made by the correcting part to the
execution result of an Id instruction. With reference to FIGS.
15A to 15D, examples of a correction made in the case
where two cache misses occur with the execution of two
cache processing operations will be described. In the
examples in FIG. 15A to 15D, a prediction simulation of the
following five instructions is performed:

“Id [r1], r2: [r1]—r2;

1d [r3], rd: [r3]—r4;

mult r5, r6, r7: r5%r6—r7;

add r2, r4, r2: r24rd—r2;

add r2, r7, r2: r24r7—r2”

FIG. 15A is a chart illustrating an example of instruction
execution timings in the case where the prediction result of
two cache processing operations is a “cache hit.” In this
prediction case, it is assumed that two Id instructions are
executed with an interval of 2 cycles (normal 1 cycle+added
1 cycle). FIG. 15B is a chart illustrating an example of
instruction execution timings in the case of a “cache miss”
where both the two cache processing operations are different
from the prediction result. In the case of the prediction miss,
two Id instructions each have a cache miss, causing a delay
for the period of a penalty cycle (6 cycles). However, the
delay times of the two Id instructions partially overlap. In
addition, a mult instruction is executed without being
affected by the delay, and the execution of two add instruc-
tions are delayed until the second Id instruction is com-
pleted. FIG. 15C is a chart illustrating an example of
instruction execution timings after correction by the correct-
ing part 905.

The correcting part 905, as described with reference to
FIGS. 14A to 14D, corrects the delay time of the first Id
instruction at a timing t,, and returns the helper function 2
cache_Id (addr, 3, —1). Then, at the current timing t,, since
the execution result of the second Id instruction is a cache
miss (miss in the prediction result), the correcting part 905
adds the penalty cycle (6) to the remaining execution time of
the Id instruction, and obtains a valid delay time (1+6=7
cycles).

The correcting part 905 subtracts the delay time spent up
to the current timing t, from the valid delay time (“current
timing t, —execution timing t, of the preceding instruction”-
set interval) to obtain a valid delay time exceeding the
current timing t; (7-(6-2)=3 cycles). The correcting part
905 defines the excess valid delay time as the execution time
of the second Id instruction. Further, the correcting part 905
subtracts the original execution time from the excess valid
delay time (3-1=2 cycles), and defines the obtained delay
time as a delay time of the preceding instruction. Further-
more, the correcting part 905 subtracts the sum of the delay
time spent up to the current timing t, and the valid delay time
exceeding the current timing t;, from the valid delay time
(7-(3+3)=1 cycle), and defines the obtained time as a grace
time.

The correcting part 905, at the timing t,, after correcting
the delay time of the second Id instruction, returns the helper
function 2 cache_Id (addr, 2, 1). With this correction, a
timing obtained by adding the corrected value (3 cycles) to
the current timing t; becomes a timing at which the Id

US 9,465,595 B2

17

instruction is completed, and from that time on, execution
times of the subsequent mult instruction and add instruction
will be added.

FIG. 15D is a chart illustrating, for comparison with the
processing by the computing apparatus 100, the magnitude
of error generated when the number of cycles at the time of
a cache miss is obtained by a simple addition according to
related art. In the case illustrated in FIG. 15D, since the
delay times based on the penalties given to two Id instruc-
tions are added directly, a large scale of an error (8 cycles)
is generated. An error (1 cycle) is generated even with the
correction by the correcting part 905 illustrated in FIG. 15C
compared to the case in which a correct simulation is
performed as illustrated in FIG. 15B. However, the number
of cycles may be obtained with very high accuracy com-
pared to related art.

FIGS. 16A to 16D are charts illustrating examples of a
correction made by the correcting part to an execution result
of an Id instruction. With reference to FIGS. 16A to 16D,
examples of a correction made in the case where one cache
miss occurs with the execution of two cache processing
operations will be described. In the examples of FIGS. 16A
to 16D, a simulation of the same five instructions as those of
the examples illustrated in FIGS. 15A to 15D is performed.

FIG. 16A is a chart illustrating an example of instruction
execution timings in the case where the prediction result of
two cache processing operations is a “cache hit.” In this
prediction case, as is the case of FIG. 15A, it is assumed that
two Id instructions are executed with an interval of 2 cycles
(normal 1 cycle+1 added cycle). FIG. 16B is a chart illus-
trating an example of instruction execution timings in the
case where the result of the first Id instruction is different
from the prediction result, that is, a “cache miss”, and the
result of the second Id instruction is the same as the
prediction result, that is, a “cache hit”. In the case of the
prediction miss, the first Id instruction causes a delay for the
period of a penalty cycle (6 cycles). The second Id instruc-
tion and a mult instruction are executed without being
affected by the delay. The execution of two add instructions
is delayed until the first Id instruction is completed. FIG.
16C is a chart illustrating an example of instruction execu-
tion timings after correction by the correcting part 905.

The correcting part 905, as described with reference to
FIGS. 14A to 14D, corrects the delay time of the first Id
instruction at a timing t,, and returns the helper function 2
cache_Id (addr, 3, —1). Then, at the current timing t,, since
the execution result of the second Id instruction is a cache hit
(the same as the prediction result), the correcting part 905
determines whether or not the period of time from the start
of the execution of the Id instruction up to the current timing
t, “t;—ty,—set interval (6—0-2=4 cycles)” is longer than the
execution time of the Id instruction (2 cycles). Since the
period of time from the start of the execution of the second
1d instruction up to the current timing t, is longer than the
execution time of the Id instruction (2 cycles), the correcting
part 905 defines the current timing t; as the execution timing
of the next mult instruction.

The correcting part 905 deals the period of time from the
completion of the execution of the second Id instruction up
to the current timing t; (2 cycles) as the delay time for the
next instruction, and the delay time of the preceding instruc-
tion pre_delay is set to 2. The correcting part 905 subtracts
the sum of the delay time spent up to the current timing t,
and the valid delay time exceeding the current timing t, from
the valid delay time of the first Id instruction (7-(6+0)=1

10

15

20

25

30

35

40

45

50

55

60

65

18

cycle), defines the obtained time as the grace time rep_de-
lay=1, and returns the helper function 2 cache_Id (addr, 1,
2).

FIG. 16D illustrates, for comparison with the processing
by the computing apparatus 100, the magnitude of error
generated when the number of cycles at the time of a cache
miss is obtained by a simple addition according to related
art. In the case of FIG. 16D, since the delay time based on
the penalty of the first Id instruction is added directly, an
error is generated.

Example of Computing Processing Procedure by Computing
Apparatus 100 According to First and Second Embodiments

FIG. 17 is a flowchart illustrating an example of a
computing processing procedure by the computing appara-
tus according to the first and second embodiments. The
computing apparatus 100 determines whether or not the
computation of a performance value of the target program
pgr has been completed (step S1701). When the computation
has not been completed (step S1701: No), the computing
apparatus 100 performs a process for generating a compu-
tational code (step S1702).

Then, the computing apparatus 100 executes a computa-
tional code associated with a target block b (step S1703).
Further, the computing apparatus 100 executes an operation
simulation sim concerning the target block b for the case
where the target CPU 101 executes the target block b (step
S1704). In the case where the execution result of the
operation simulation sim concerning the target block b is
utilized for execution of the computational code, the execu-
tion of the computational code waits for the execution of the
operation simulation sim concerning the target block b to be
completed.

Following step S1703 and step S1704, the computing
apparatus 100 performs a process for optimizing the com-
putational code (step S1705), and returns to step S1701.
When the computation has been completed in step S1701
(step S1701: Yes), the computing apparatus 100 collects
computing results (step S1706), and terminates the series of
processing operations. In step S1706, the computing appa-
ratus 100, for example, sums up performance values of
individual blocks b, and thus obtains the performance value
of the target program pgr for the case where the target CPU
101 is executed with the target program pgr.

FIG. 18 is a flowchart illustrating the generation process
illustrated in FIG. 17 according to the first and second
embodiments in detail. The computing apparatus 100 deter-
mines whether or not compiling of the target block b has
been completed (step S1801). The computing apparatus 100
is then capable of specifying a target block b that is to be the
next computing target, based on the value of a program
counter (PC) in the operation simulation sim. Further, the
computing apparatus 100 is capable of specifying the target
block b based on the execution result of a functional code
included in the computational code.

In the case where compiling of the target block b has not
been completed (step S1801: No), the computing apparatus
100 divides the target program pgr and acquires a target
block b (step S1802). Then, the computing apparatus 100
detects an externally dependent instruction in the target
block b (step S1803).

The computing apparatus 100, based on the prediction
information 321, sets a prediction case concerning the
externally dependent instruction (step S1804). Then, the
computing apparatus 100, based on the timing information
320, performs a prediction simulation of performance values
of'individual instructions for the set prediction case (S1805).
Next, the computing apparatus 100 generates a computa-

US 9,465,595 B2

19

tional code which includes a functional code obtained by
compiling the target block b, and a code based on the
prediction simulation result (step S1806), and terminates the
series of processing operations. The computational code
generated in step S1806 is, for example, a first computa-
tional code.

When compiling of the target block b has been completed
in step S1801 (step S1801: Yes), the computing apparatus
100 terminates the series of processing operations.

FIG. 19 is a flowchart illustrating the code optimizing
process illustrated in FIG. 17 according to the first and
second embodiments in detail. The computing apparatus 100
acquires a computational code (step S1901). The computing
apparatus 100 replaces a helper function 1 call instruction
that is represented by an address in the call instruction list
L_helper of the computational code with a performance
computing instruction (step S1902). The computing appa-
ratus 100 detects a helper function 1 call instruction con-
cerning the data cache memory 1001 other than the helper
function 1 call instruction represented by the address in the
call instruction list [._helper of the computational code (step
S1903). The computing apparatus 100 replaces the detected
helper function 1 call instruction with a helper function 2
call instruction concerning the data cache memory 1001
(step S1904), and terminates the series of processing opera-
tions.

FIG. 20 is a flowchart illustrating an example of a
computing processing procedure according to the helper
function 1 concerning the data cache memory by the com-
puting apparatus according to the first embodiment. The
computing apparatus 100 determines whether or not the data
cache memory 1001 is in an available state for use (step
S2001). When the data cache memory 1001 is in the
available state for use (step S2001: Yes), the computing
apparatus 100 determines whether or not an attribute of the
access destination in the operation simulation sim is an
attribute which indicates that the data cache memory 1001 is
available for use (step S2002).

When it has been determined that the attribute is an
attribute which indicates that the data cache memory 1001 is
available for use (step S2002: Yes), the computing apparatus
100 determines whether or not the cache access result in the
operation simulation sim matches the prediction case (step
S2003). The cache access result is an operational result of
the data cache memory 1001. In the case where the cache
access result matches the prediction case (step S2003: Yes),
the computing apparatus 100 outputs a performance value
obtained through a prediction simulation (step S2004), and
terminates the series of processing operations. In the case
where the cache access result does not match the prediction
case (step S2003: No), the computing apparatus 100 pro-
ceeds to step S2007.

When it has been determined that the attribute is not an
attribute which indicates that the data cache memory 1001 is
available for use (step S2002: No), the computing apparatus
100 outputs the address of the current helper function 1 call
instruction to the call instruction list I_helper (step S2005).
The computing apparatus 100 determines whether or not the
prediction case is a hit (step S2006). In the case where the
prediction case is a hit (step S2006: Yes), the computing
apparatus 100 corrects the performance value obtained
through the prediction simulation (step S2007). Then, the
computing apparatus 100 outputs the corrected performance
value (step S2008), and terminates the series of processing
operations. In the case where the prediction case is not a hit
(step S2006: No), the computing apparatus 100 proceeds to
step S2004.

25

30

40

45

50

20

In the case where the data cache memory 1001 is not in
the available state for use in step S2001, (step S2001: No),
the computing apparatus 100 proceeds to step S2006.

FIG. 21 is a flowchart illustrating an example of a
computing processing procedure according to the helper
function 2 concerning the data cache memory by the com-
puting apparatus according to the first embodiment. The
helper function 2 concerning the data cache memory 1001 is
a function in which instructions for processing for deter-
mining the state of availability of the data cache memory
1001 and processing for determining an attribute of the
access destination in the helper function 1 concerning the
data cache memory 1001 are omitted.

First, the computing apparatus 100 determines whether or
not the cache access result in the operation simulation sim
matches the prediction case (step S2101). In the case where
the cache access result matches the prediction case (step
S2101: Yes), the computing apparatus 100 outputs a perfor-
mance value obtained through a prediction simulation (step
S2102), and terminates the series of processing operations.

In the case where the cache access result does not match
the prediction case (step S2101: No), the computing appa-
ratus 100 corrects the performance value obtained through
the prediction simulation (step S2103). The computing
apparatus 100 outputs the corrected performance value (step
S2104), and terminates the series of processing operations.

Third Embodiment

During initialization of the target CPU 101, a cache
memory is not in the available state for use. When the
initialization of the target CPU 101 is completed, the cache
memory becomes available for use. In the third embodiment,
during the period of time in which the state of the cache
memory is shifted from the unavailable state for use to the
available state for use, a computational code for computing
a performance value of a target block b based on a perfor-
mance value of an access instruction for the case where a
cache memory is not used is executed. Accordingly, the
amount of computation for the performance value of the
target block b during the period when the cache memory is
not available for use may be reduced, and the performance
value of the target program pgr may be computed more
quickly.

In the third embodiment, detailed explanations for the
same functions and configurations as those described in the
first or second embodiment will be omitted. In the third
embodiment, as with the first embodiment and the second
embodiment, the data cache memory 1001 is given as an
example. However, an instruction cache memory may be
used instead.

Furthermore, during initialization of the target CPU 101,
a TLB is not in the available state for use. When the
initialization of the target CPU 101 is completed, the TLB
becomes available for use. In the third embodiment, during
the period of time in which the state of the TLB is shifted
from the unavailable state for use to the available state for
use, a computational code for computing a performance
value of the target block b based on a performance value of
an access instruction for the case where the TLB is not used
is executed. Accordingly, the amount of computation for the
performance value of the target block b during the period
when the TLB is not available for use may be reduced, and
the performance value of the target program pgr may be
computed more quickly.

US 9,465,595 B2

21

Example of Functional Configuration of Computing Appa-
ratus 100 According to Third Embodiment

FIG. 22 is a block diagram illustrating an example of a
functional configuration of the computing apparatus accord-
ing to the third embodiment. The computing apparatus 100
includes the code converting unit 301, the code execution
unit 302, a code optimization unit 2201, and the simulation
information collecting unit 304.

Processing from the code converting unit 301 to the
simulation information collecting unit 304 illustrated in FIG.
22 is, for example, coded on a computing program stored in
the memory device such as the disk 205 accessible by the
host CPU 201. Then, the host CPU 201 reads the computing
program stored in the memory device and executes the
processing coded on the computing program. Accordingly,
the processing from the code converting unit 301 to the
simulation information collecting unit 304 is implemented.
The processing results of the individual units are stored, for
example, in the memory device, such as the RAM 203 or the
disk 205.

Specifically, the code converting unit 301 includes the
block dividing part 311, a first determining part 2211, a
second determining part 2212, the prediction simulation
execution part 313, and the code generating part 314. The
block dividing part 311 has the same function as the block
dividing part 311 explained in the first embodiment.

The first determining part 2211 determines whether or not
compiling of the block b has been completed. An actual
determination method by the first determining part 2211 is
the same as the determination method by the determining
part 312 illustrated in the first embodiment.

Data Cache Memory

FIG. 23 is an explanatory diagram illustrating generation
example 1 of a computational code concerning the data
cache memory according to the third embodiment. When it
has been determined that compiling has not been completed,
the second determining part 2212 determines whether or not
the data cache memory 1001 is in the available state for use
when an access instruction in the target block b is executed
in the operation simulation sim. Here, the target block b is
not executed in the operation simulation sim. Therefore, the
second determining part 2212 determines, based on the
current state in the operation simulation sim, whether or not
the data cache memory 1001 is in the available state for use
at the time of execution of an access instruction in the target
block b in the operation simulation sim.

The second determining part 2212 determines whether or
not the data cache memory 1001 is in the available state for
use. Specifically, the second determining part 2212 detects a
C-bit value of a system control register SCTRL. When the
C-bit value of the system control register SCTRL is 0, the
second determining part 2212 determines that the data cache
memory 1001 is not in the available state for use. When the
C-bit value of the system control register SCTRL is 1, the
second determining part 2212 determines that the data cache
memory 1001 is in the available state for use.

The prediction simulation execution part 313 acquires and
sets, based on the prediction information 321, each predic-
tion case concerning an externally dependent instruction
included in the target block b. Further, the prediction simu-
lation execution part 313 sets, based on a determination
result by the second determining part 2212, a prediction case
concerning the data cache memory 1001 regarding an access
instruction. For example, when it has been determined that
the data cache memory 1001 is not in the available state for
use, the prediction simulation execution part 313 sets a
“cache miss” for the prediction case concerning the data

10

15

20

25

30

35

40

45

50

55

60

22

cache memory 1001 for the case where an access instruction
is executed. For example, when it has been determined that
the data cache memory 1001 is in the available state for use,
the prediction simulation execution part 313 sets a “cache
hit” for the prediction case concerning the data cache
memory 1001 for the case where an access instruction is
executed.

Then, the prediction simulation execution part 313 refer-
rers to the timing information 320, and simulates the execu-
tion progress of individual instructions in the target block b
based on the assumption of the set prediction case. Accord-
ingly, the prediction simulation execution part 313 obtains
performance values of individual instructions in the target
block b based on the assumption of the set prediction case.

In the case where it has been determined that the data
cache memory 1001 is not in the available state for use, the
code generating part 314 generates a computational code
cc232. The generated computational code cc232 is associ-
ated with the target block b, and is stored in the memory
device such as the RAM 203 or the disk 205. The compu-
tational code cc232 is a code for computing the performance
value of the target block b, based on performance values of
individual instructions in the target block b for the case
where the data cache memory 1001 is not used, without
depending on the state of the data cache memory 100. As
illustrated in FIG. 23, in the case where the data cache
memory 1001 is not in the available state for use, the
computational code cc232 includes a performance comput-
ing instruction of an Id instruction for adding a performance
value for the case where the data cache memory 1001 is not
used to the performance value of the target block b. Further,
the code execution unit 302 executes the generated compu-
tational code cc232. This enables a reduction in the amount
of computation.

In the case where it has been determined that the data
cache memory 1001 is not in the available state for use, after
the code execution unit 302 executes the computational code
cc232 associated with the target block b, the code optimi-
zation unit 2201 determines whether or not to invalidate all
the computational codes. Specifically, the code optimization
unit 2201 includes a determining part 2221 and an invali-
dating part 2222.

In the case where it has been determined that the data
cache memory 1001 is not in the available state for use, after
the computational code cc232 is executed, the determining
part 2221 determines whether or not the data cache memory
1001 is in the available state for use. Depending on the
determination of the determining part 2221, a shift in state
of the data cache memory 1001 from the unavailable state
for use to the available state for use is detected. The
determination method of the determining part 2221 is the
same as that of the second determining part 2212.

In the case where the determining part 2221 has deter-
mined that the data cache memory 1001 is not in the
available state for use, the invalidating part 2222 does not
invalidate the computational code cc232 for each block b.
For example, in the case where the determining part 2221
has determined that the data cache memory 1001 is not in the
available state for use and the target block b becomes a new
computing target for a performance value, the code execu-
tion unit 302 executes the computational code cc232.
Accordingly, during the period when the data cache memory
1001 is not in the available state for use, the performance
value of the target block b is computed with the computa-
tional code cc232.

In contrast, in the case where the determining part 2221
has determined that the data cache memory 1001 is in the

US 9,465,595 B2

23

available state for use, the invalidating part 2222 invalidates
the computational code cc232 for each block b. Specifically,
by deleting the computational code cc232 stored in associa-
tion with each block b, the invalidating part 2222 invalidates
the computational code cc232. Accordingly, since the com-
putational code associated with the target block b as a new
computing target has been invalidated by the invalidating
part 2222, the first determining part 2211 determines that
compiling of the target block b has not yet been completed.

Then, when it has been determined that compiling of the
target block b has not been completed, the second deter-
mining part 2212 determines whether or not the data cache
memory 1001 is in the available state for use. As described
above, in the case where it has been determined that the data
cache memory 1001 is in the available state for use, the
prediction simulation execution part 313 sets a “cache hit”
for the prediction case concerning the data cache memory
1001 for the case where an access instruction is executed.
The prediction simulation execution part 313 referrers to the
timing information 320, and simulates the execution prog-
ress of individual instructions in the target block b based on
the assumption of the set prediction case. Accordingly, the
prediction simulation execution part 313 obtains perfor-
mance values of individual instructions in the target block b
based on the assumption of the set prediction case.

In the case where the second determining part 2212 has
determined that the data cache memory 1001 is in the
available state for use since the C-bit value of the system
control register SCTRL is 1, the code generating part 314
generates a computational code cc233. The computational
code cc233 is a code for computing a performance value of
the block b based on performance values of individual
instructions in the target block b for the case where the data
cache memory 1001 is used. As illustrated in FIG. 23, the
computational code cc233 includes a helper function call
instruction of the Id instruction for calling a helper function
for correcting the performance value of the Id instruction
according to the result of a cache access of the data cache
memory 1001. For example, the computational code cc233
including the helper function 1 call instruction described in
the first embodiment may be generated here, and a combi-
nation of the first embodiment and the third embodiment
may thus be achieved.

Then, the code execution unit 302 executes the generated
computational code cc233. Further, once the state of the data
cache memory 1001 is shifted from the unavailable state for
use to the available state for use, the data cache memory
1001 will not return to the unavailable state. During initial-
ization of the target CPU 101, the data cache memory 1001
is not in the available state for use. When the initialization
of the target CPU 101 is completed, the data cache memory
1001 becomes available for use. When the second deter-
mining part 2212 determines that the data cache memory
1001 is in the available state for use, the code optimization
unit 2201 according to the third embodiment does not
perform processing.

TLB

FIG. 24 is an explanatory diagram illustrating generation
example 2 of a computational code concerning the TLB
according to the third embodiment. In the case of a TLB
2401, as with the data cache memory 1001, processing is
performed for individual parts. The second determining part
2212 determines whether or not the TLB 2401 is in the
available state for use. Specifically, the second determining
part 2212 detects an M-bit value of the system control
register SCTRL. When the M-bit value of the system control
register SCTRL is 0, the second determining part 2212

10

15

20

25

30

35

40

45

50

55

60

65

24

determines that the TLB 2401 is not in the available state for
use. When the M-bit value of the system control register
SCTRL is 1, the second determining part 2212 determines
that the TLB 2401 is in the available state for use.

The prediction simulation execution part 313 acquires and
sets, based on the prediction information 321, each predic-
tion case concerning an externally dependent instruction
included in the target block b. Further, the prediction simu-
lation execution part 313 sets, based on the determination
result by the second determining part 2212, a prediction case
concerning the data cache memory 1001 regarding an access
instruction. For example, in the case where it has been
determined that the TLB 2401 is not in the available state for
use, the prediction simulation execution part 313 sets “TLB
unavailable for use” for the prediction case concerning the
data cache memory 1001 for the case where an access
instruction is executed. For example, in the case where it has
been determined that the TLB 2401 is in the available state
for use, the prediction simulation execution part 313 sets a
“cache hit” for the prediction case concerning the TLB 2401
for the case where an access instruction is executed.

Then, the prediction simulation execution part 313, as
described above, obtains performance values of individual
instructions in the target block b based on the assumption of
the set prediction case.

In the case where the second determining part 2212 has
determined that the TLB 2401 is not in the available state for
use, the code generating part 314 generates a computational
code cc242. The computational code cc 242 is a code for
computing a performance value of the target block b, based
on performance values of individual instructions in the
target block b for the case where the data cache memory
1001 is not used, without depending on the state of the TLB
2401. The code execution unit 302 executes the generated
computational code cc242. As illustrated in FIG. 24, in the
case where the TLB 2401 is not in the available state for use,
the computational code cc242 includes a performance com-
puting instruction of an Id instruction for adding a perfor-
mance value for the case where the TLB 2401 is not used to
the performance value of the target block b.

Since processing of the code execution unit 302, the code
optimization unit 2201, and the like, is similar to that in the
case of the data cache memory 1001, a detailed explanation
for the processing will be omitted.

In the case where the second determining part 2212 has
determined that the TLB 2401 is in the available state for
use, the code generating part 314 generates a computational
code cc243. The computational code cc243 is a code for
computing the performance value of the target block b,
based on performance values of individual instructions in
the target block b for the case where the TLB 2401 is used.
As illustrated in FIG. 24, the computational code cc243
includes a helper function call instruction of the Id instruc-
tion for calling a helper function for correcting a perfor-
mance value of the Id instruction according to the search
result of the TLB 2401. For example, the computational
code cc243 including the helper function 1 call instruction
described in the fourth embodiment may be generated here.
Accordingly, a combination of the third embodiment and the
fourth embodiment may thus be achieved.

For easier understanding, descriptions on the generation
examples of the computational code cc 243 are given by
discriminating between the cases of the TLB 2401 and of the
data cache memory 1001. However, in actuality, the same
performance computing instruction and the same helper
function may be used.

US 9,465,595 B2

25

Example of Computing Processing Procedure by Computing
Apparatus 100 According to Third Embodiment

In the third embodiment, a computing processing proce-
dure example which is the same as that performed by the
computing apparatus 100 according to the first or second
embodiment will not be explained, and only computing
processing different from that in the first and second embodi-
ments will be explained in detail.

FIG. 25 is a flowchart illustrating the generation process
illustrated in FIG. 17 according to the third embodiment in
detail. The computing apparatus 100 determines whether or
not compiling of the target block b has been completed (step
S2501). The computing apparatus 100 is capable of speci-
fying a target block b that is to be the next computing target,
based on the value of the PC in the operation simulation sim.
Further, the computing apparatus 100 is capable of speci-
fying a target block b based on the execution result of a
functional code included in a computational code.

In the case where compiling of the target block b has not
been completed (step S2501: No), the computing apparatus
100 divides the target program pgr and acquires a target
block b (step S2502). The computing apparatus 100 detects
an externally dependent instruction in the target block b
(step S2503).

The computing apparatus 100 determines whether or not
the data cache memory 1001 in the operation simulation sim
is in the available state for use (step S2504). Specifically, the
computing apparatus 100 makes the determination based on
a C-bit value of the system control register SCTRL in the
operation simulation sim. The computing apparatus 100
determines whether or not the TLB 2401 in the operation
simulation sim is in the available state for use (step S2505).
Specifically, the computing apparatus 100 makes the deter-
mination based on a C-bit value of the system control
register SCTRL in the operation simulation sim.

The computing apparatus 100 sets, based on the predic-
tion information 321 and a determination result as to the
availability, a prediction case concerning the externally
dependent instruction (step S2506). The computing appara-
tus 100 performs, based on the timing information 320, a
prediction simulation of performance values of individual
instructions for the set prediction case (step S2507). The
computing apparatus 100 generates a computational code
which includes a functional code obtained by compiling the
target block b and a code based on the prediction simulation
result (step S2508), and terminates the series of processing
operations. The computational code generated in step S2508
is a first computational code.

When compiling of the target block b has been completed
in step S2501 (step S2501: Yes), the computing apparatus
100 terminates the series of processing operations.

FIG. 26 is a flowchart illustrating the code optimization
process illustrated in FIG. 17 according to the third embodi-
ment in more detail. The computing apparatus 100 deter-
mines whether or not the state of the data cache memory
1001 has been shifted from the unavailable state for use to
the available state for use (step S2601). When the data cache
memory 1001 has not been shifted from the unavailable state
for use to the available state for use (step S2601: No), the
computing apparatus 100 determines whether or not the
TLB 2401 has been shifted from the unavailable state for use
to the available state for use (step S2602). When the TLB
2401 has been shifted from the unavailable state for use to
the available state for use in step S2602 (step S2602: Yes) or
the data cache memory 1001 has been shifted from the
unavailable state for use to the available state for use in step
S2601 (step S2601: Yes), the computing apparatus 100

5

10

15

20

25

30

35

40

45

50

55

60

65

26

invalidates a computational code stored in association with
each block b (step S2603), and terminates the series of
processing operations. Specifically, the computing apparatus
100 deletes the computational code stored in association
with each block b.

In contrast, in the case where the TLB 2401 has not been
shifted from the unavailable state for use to the available
state for use (step S2602: No), the computing apparatus 100
terminates the series of processing operations. Either of step
S2601 and step S2602 may be executed first. For example,
when a computational code is invalidated in step S2603, it
is determined that compiling of the block b is not completed
in step S2501 and a new computational code concerning the
block b is generated.

Fourth Embodiment

In the case where the target CPU 101 is an ARM proces-
sor, the target CPU 101 has two operation modes: a first
mode and a second mode. The first mode is referred to as a
user mode. The second mode is referred to as a privileged
mode, in which the operation of the target CPU 101 is less
limited compared to the first mode. That is, the target CPU
101 has a privileged mode and a user mode. All the operation
modes different from the user mode are referred to as a
privileged mode. Since the privileged mode is an operation
mode in which the operation of a processor is less limited
compared to the user mode, it is possible to access a system
area in which a kernel or the like is stored in the privileged
mode. Access to the system area in the privileged mode is
designed in advance so that there is a hit in the TLB 2401.
For example, with the TLB 2401, the system area is man-
aged with a single page table entry. The TLB 2401 is
designed in advance in such a manner that the page table
entry is not deleted from the TLB 2401 by using a special
flag for the system area. Accordingly, a hit in the TLB 2401
by the access may be realized. Thus, in the case where an
access instruction in the privileged mode is executed by the
target CPU 101, since access to the system area is made, the
operation of the TL.B 2401 for the access instruction is “hit”.

In the fourth embodiment, in the case where the operation
mode is the privileged mode at the time when an access
instruction is executed in an operation simulation sim, a
computational code for computing the performance value of
a target block b, based on performance values of individual
instructions in the target block b based on the assumption of
a hit in the TLB, is generated. Therefore, in the case where
the target block b becomes a new computing target, pro-
cessing for determining whether there is a hit in the TLB is
not performed. Thus, the amount of computation for the case
where the target block b becomes a new computing target
may be reduced. In the fourth embodiment, detailed expla-
nations for the same functions and configurations as those
explained in any of the first to third embodiments will be
omitted.

First, the code generating part 314 performs compiling of
the target block b to generate a functional code. The code
generating part 314 also generates a performance computing
instruction for adding the performance values of individual
instructions within the target block b obtained by a predic-
tion simulation to the performance value of the target block
b. The code generating part 314 also generates a helper
function 1 call instruction for calling a helper function 1 for
an externally dependent instruction. The helper function 1
call instruction is an instruction for calling a helper function
1 and adding a performance value output in accordance with
processing according to the helper function 1 to the perfor-

US 9,465,595 B2

27

mance value of the target block b. The processing according
to the helper function 1 in the fourth embodiment is pro-
cessing for correcting the performance value of an access
instruction based on the operation mode of the target CPU
101 and the state of the TLB 2401 at the time when the
access instruction is executed and outputting the corrected
performance value.

For an externally dependent instruction other than the
access instruction, the code generating part 314 generates,
based on whether the execution result of the externally
dependent instruction matches a prediction case, a helper
function for directing processing for correcting the perfor-
mance value of the externally dependent instruction for the
case of the prediction case. Then, the code generating part
314 generates a first computational code, which is obtained
by adding the generated performance computing instruction
and helper function 1 call instruction to the functional code.
The generated first computational code is associated with the
target block b and stored in the memory device such as the
RAM 203 or the disk 205.

Then, the code execution unit 302 performs a perfor-
mance simulation for computing the performance value of
the target block b by executing the first computational code.
As in the first embodiment, the code execution unit 302
includes the execution part 901, the first determining part
902, the second determining part 903, the output part 904,
and the correcting part 905.

FIG. 27 is an explanatory diagram illustrating an execu-
tion example by the code execution unit according to the
fourth embodiment. For example, the code execution unit
302 executes instructions included in a first computational
code cc2701 in order. Then, the execution part 901 executes
a helper function 1 call instruction concerning the TLB 2401
of an Id instruction, calls a helper function 1, and performs
processing instructed by the helper function 1. Accordingly,
processing from the first determining part 902 to the cor-
recting part 905 is performed.

In the example of FIG. 27, the first determining part 902
determines whether or not the TLB 2401 is effective in an
operation at the time of execution of the target block b of the
simulation sim of an operation in which the target CPU 101
executes the target program pgr. For example, in the case
where the target CPU 101 is an ARM processor, the first
determining part 902 detects an M-bit value of the system
control register SCTRL in the operation at the time of
execution of the target block b of the operation simulation
sim. Then, the first determining part 902 determines whether
the M-bit value of the system control register SCTRL is 0 or
1. In the case where the M-bit value of the system control
register SCTRL is 0, the first determining part 902 deter-
mines that the TLB 2401 is not in an available state for use.
In the case where the M-bit value of the system control
register SCTRL is 1, the first determining part 902 deter-
mines that the TLB 2401 is in an available state for use.

In the case where it has been determined that the TLB
2401 is in the available state for use, the second determining
part 903 determines whether or not the operation mode of
the target CPU 101 at the time when executing an access
instruction within the target block b in the operation simu-
lation sim is a privileged mode.

More specifically, in the case where the target CPU 101 is
an ARM processor, the second determining part 903 detects
the value of an M field of a CPSR register. In the case where
the value of the M field of the CPSR register is “1000b”, the
second determining part 903 determines that the operation
mode of the target CPU 101 is a user mode. In the case
where the value of the M field of the CPSR register is a value

20

25

30

40

45

60

28

different from “1000b”, the second determining part 903
determines that the operation mode of the target CPU 101 is
a privileged mode.

In the case where it has been determined that the operation
mode is a privileged mode, the output part 904 outputs the
address of a memory area in which the helper function 1 call
instruction, which is the callout source, is stored to a call
instruction list L_helper.

In the case where it has been determined that the operation
mode is a privileged mode, the correcting part 905 outputs
the performance value of the access instruction without
correcting the performance value, if the prediction case is a
“hit”. In the case where it has been determined that the
operation mode is a privileged mode, the correcting part 905
makes a correction to a performance value of the access
instruction for the case where the operation of the TLB 2401
is a “hit”, based on the timing information 320, if the
prediction case is a “miss hit”, and outputs the corrected
performance value.

In the case where it has been determined that the operation
mode is a user mode, the correcting part 905 determines
whether or not an operational result of the TLB 2401 in the
operation simulation sim matches the prediction case, if the
prediction case is a “miss hit”. In the case where the
operational result matches the prediction case, the correcting
part 905 outputs the performance value of the access instruc-
tion, without correcting the performance value. In the case
where the operational result does not match the prediction
case, the correcting part 905 corrects the performance value
of the access instruction, and outputs the corrected perfor-
mance value. In the example described above, since the
prediction case is a “cache hit”, the correcting part 905
determines whether the operation of the TLB 2401 in the
operation simulation sim is a “miss hit”. In the case where
the operation of the TLB 2401 is a “miss hit”, the correcting
part 905 corrects the performance value by adding a penalty
value within the timing information 320 to the performance
value of the access instruction, and outputs the corrected
performance value. An example of correcting processing by
the correcting part 905 is described in detail in the second
embodiment.

In the case where it has been determined that the TLB
2401 is ineffective, the correcting part 905 corrects, based on
the timing information 320, the performance value by add-
ing a penalty value for the case where the TLB 2401 is
ineffective to the performance value of the access instruc-
tion, and outputs the corrected performance value.

In the case where it has been determined that the operation
mode is a privileged mode, the code optimization unit 2201
generates a second computational code. The second com-
putational code is a computational code for computing the
performance value of the target block b for the case where
the host CPU 201 executes the target block b, based on the
performance values of individual instructions within the
target block b for the case where the operation of the TLB
2401 is a “hit”, without depending on the operation mode.
As described above, regarding access to the system area,
since the operation of the TL.B 2401 is a “hit”, processing for
correcting the performance value of the access instruction in
accordance with whether or not the operation of the TLB
2401 is a “hit”, is not performed.

More specifically, the code optimization unit 2201
replaces the helper function 1 call instruction represented by
an address within the call instruction list [._helper of the first
computational code cc2701 with a performance computing
instruction for addition of the performance value of an Id
instruction for the case where there is a “hit”. Accordingly,

US 9,465,595 B2

29

the code optimization unit 2201 generates the second com-
putational code. The generated second computational code
is associated with the target block b and stored in memory
device, such as the RAM 203 or the disk 205.

In the case where the block b for which the second
computational code has been generated becomes the target
block b, since the second computational code is associated
with the target block b, the determining part 312 determines
that compiling has been completed. The code execution unit
302 performs a simulation of a performance for computing
the performance value of the target block b by executing the
second computational code. As described above, processing
from the first determining part 902 to the correcting part 905
included in the code execution unit 302 is coded on a helper
function 1. Thus, in execution of the second computational
code on which the helper function 1 call instruction is not
coded, processing from the first determining part 902 to the
correcting part 905 is not performed.

Accordingly, a performance value for the case where a
target block b including an access instruction becomes a new
computing target may be computed more quickly.

In the case where it has been determined that the operation
mode is not a privileged mode, the code optimization unit
2201 generates a second computational code. The second
computational code is a computational code for computing
the performance value of the target block b for the case
where the host CPU 201 executes the target block b, based
on the performance values of individual instructions within
a target block b for the case where the operation of the TLB
2401 matches a prediction case, without depending on the
operation mode.

Example of Computing Processing Procedure by Computing
Apparatus 100 According to Fourth Embodiment

In the fourth embodiment, a computing processing pro-
cedure example which is the same as that performed by the
computing apparatus 100 according to the first or second
embodiment will not be explained, and only computing
processing different from that in the first and second embodi-
ments will be explained in detail.

FIG. 28 is a flowchart illustrating an example of a
computing processing procedure according to a helper func-
tion 1 concerning a TLB by the computing apparatus accord-
ing to the fourth embodiment. The helper function 1 con-
cerning the TLB 2401 is called, for example, when the host
CPU 201 executes a helper function 1 call instruction, which
is a code for a performance simulation for an access instruc-
tion, such as an st instruction or an Id instruction.

The computing apparatus 100 determines whether or not
the TLB 2401 of the target CPU 101 is in the available state
for use in an operation simulation sim (step S2801). As
described above, in the case where the target CPU 101 is an
ARM processor, the computing apparatus 100 determines
whether the M-bit value of the system control register
SCTRL in the operation simulation sim is O or 1. In the case
where the M-bit value of the system control register SCTRL
is 0, the computing apparatus 100 determines that the TLB
2401 is not in the available state for use. In the case where
the M-bit value of the system control register SCTRL is 1,
the computing apparatus 100 determines that the TLB 2401
is in the available state for use.

In the case where the TLB 2401 is in the available state
for use (step S2801: Yes), the computing apparatus 100
determines whether or not the operation mode of the target
CPU 101 in the operation simulation sim is a privileged
mode (step S2802). For example, in the case where the target
CPU 101 is an ARM processor, the computing apparatus 100
determines, based on the value of an M field of the CPSR,

10

15

20

25

30

35

40

45

50

55

60

65

30

whether or not the operation mode is in the privileged mode.
In the case where the value of the M field of the CPSR is
1000b, the computing apparatus 100 determines that the
operation mode is a user mode. In the case where the value
of the M field of the CPSR is different from 1000b, the
computing apparatus 100 determines that the operation
mode is a privileged mode.

In the case of the privileged mode (step S2802: Yes), the
computing apparatus 100 outputs the address of the current
helper function call instruction to the call instruction list
L_helper (step S2803). The computing apparatus 100 deter-
mines whether or not a prediction case is a hit (S2804). In
the case where the prediction case is a hit (step S2804: Yes),
the computing apparatus 100 proceeds to step S2806. In the
case where the prediction case is not a hit (step S2804: No),
the computing apparatus 100 proceeds to step S2809.

In the privileged mode, access to the system area is made
with an Id instruction or an st instruction. As described
above, regarding access to the system area, the result of a
search of the TLB 2401 represents a hit. Therefore, the
performance value in the case where there is a hit in the TLB
2401 is output.

In the case of a mode different from the privileged mode
in step S2802 (step S2802: No), the computing apparatus
100 determines whether or not the result of the search of the
TLB 2401 in the operation simulation sim matches the
prediction case (step S2805). In the case where the result
matches the prediction case (step S2805: Yes), the comput-
ing apparatus 100 outputs the performance value obtained
through a prediction simulation (step S2806). Then, the
computing apparatus 100 terminates the series of processing
operations. In the case where the result does not match the
prediction case (step S2805: No), the computing apparatus
100 corrects the performance value obtained through the
prediction simulation (step S2809). Here, a correction is
made based on a penalty value in the case where the TLB is
available for use included in the timing information 320.
Then, the computing apparatus 100 outputs the corrected
performance value (step S2810), and terminates the series of
processing operations.

In the case where the TLB 2401 is not in the available
state for use in step S2801 (step S2801: No), the computing
apparatus 100 corrects the performance value obtained
through the prediction simulation (step S2807). Here, a
correction is made based on a penalty value in the case
where the TLB is not available for use included in the timing
information 320. The computing apparatus 100 outputs the
corrected performance value (step S2808), and terminates
the series of processing operations.

FIG. 29 is a flowchart illustrating an example of a
computing processing procedure according to a helper func-
tion 2 concerning the TLB by the computing apparatus
according to the fourth embodiment. The helper function 2
concerning the TLB 2401 is a function in which the deter-
mination as to whether or not the operation mode is a
privileged mode in the helper function 1 is omitted. The
computing apparatus 100 determines whether or not the
result of a search of the TLB 2401 in the operation simu-
lation sim matches the prediction case (step S2901). In the
case where the result matches the prediction case (step
S2901: Yes), the computing apparatus 100 outputs the
performance value obtained through the prediction simula-
tion (step S2902). Then, the computing apparatus 100 ter-
minates the series of processing operations. In the case
where the result does not match the prediction case (step
S2901: No), the computing apparatus 100 corrects the
performance value obtained through the prediction simula-

US 9,465,595 B2

31

tion (step S2903). Then, the computing apparatus 100 out-
puts the corrected performance value (step S2904), and
terminates the series of processing operations.

Fifth Embodiment

In the fifth embodiment, in replacement of the helper
function 1 call instruction in the first or fourth embodiment
with a performance computing instruction, consecutive per-
formance computing instructions are integrated into one
performance computing instruction. Accordingly, the
amount of computation for the case where the target block
b becomes a new computing target may be reduced. Fur-
thermore, in the fifth embodiment, a detailed explanation for
the same functions and configurations as those explained in
any of the first to fourth embodiments will be omitted.

FIG. 30 is an explanatory diagram illustrating an example
of code optimization by the computing apparatus according
to the fifth embodiment. The code optimization unit 2201 in
the fifth embodiment generates a computational code cc302-
2, which is obtained by replacing a helper function 1 call
instruction within a computational code cc301 and perfor-
mance computing instructions that may be consecutive to
one another with an integrated performance computing
instruction, which is an integration of the helper function 1
call instruction and the performance computing instructions.
In this case, the amount of computation may be reduced
compared to a computational code cc302-1 obtained by
simply replacing the helper function 1 call instruction with
a performance computing instruction.

FIG. 31 is a block diagram illustrating a detailed example
of the code optimization unit. The code optimization unit
2201 includes an acquisition part 3101, a first detecting part
3102, a second detecting part 3103, a calculating part 3104,
and a replacing part 3105.

First, an example in which a helper function 1 call
instruction that has been determined not to use the data
cache memory 1001 is replaced with a performance com-
puting instruction, which has been explained in the first
embodiment, will be explained. The acquisition part 3101
acquires the computational code cc301 stored in association
with the target block b.

The first detecting part 3102 detects a helper function 1
call instruction for an access instruction for which it has
been determined that an attribute does not indicate that the
data cache memory 1001 is available for use from the
acquired computational code cc301. The second detecting
part 3103 detects a performance computing instruction exist-
ing in a range from the detected helper function 1 call
instruction to a helper function 1 call instruction for an
access instruction for which it has been determined that an
attribute indicates that the data cache memory 1001 is
available for use.

For example, the calculating part 3104 calculates the total
value of a performance value to be added to the performance
value of the target block b based on the detected perfor-
mance computing instruction and the performance value of
an access instruction for the case where the data cache
memory 1001 is not used.

The replacing part 3105 replaces the detected perfor-
mance computing instruction and the detected helper func-
tion 1 call instruction in the computational code cc301 with
a performance computing instruction for adding the calcu-
lated total value to the performance value of the target block
b.

Next, an example in which a helper function 1 call
instruction for which it has been determined that the opera-

30

35

40

45

50

65

32

tion mode of the target CPU 101 is a privileged mode is
replaced with a performance computing instruction, which
has been explained in the fourth embodiment, will be
explained. The acquisition part 3101 acquires the computa-
tional code cc301.

The first detecting part 3102 detects a helper function 1
call instruction for an access instruction for which it has
been determined that the operation mode is a privileged
mode from the acquired computational code cc301. The
second detecting part 3103 detects a performance computing
instruction existing in a range from the detected helper
function 1 call instruction to a helper function 1 call instruc-
tion for an access instruction for which it has been deter-
mined that the operation mode is not a privileged mode.

For example, the calculating part 3104 calculates the total
value of a performance value to be added to the performance
value of the target block b based on the detected perfor-
mance computing instruction and the performance value of
an access instruction for the case where conversion infor-
mation on a logical address and a physical address is stored
in the TLB.

The replacing part 3105 replaces the detected perfor-
mance computing instruction and the detected helper func-
tion 1 call instruction from the computational code cc301
with a performance computing instruction for adding the
calculated total value to the performance value of the target
block b.

Next, operation example 1 by the code optimization unit
2201 will be explained in detail with reference to FIGS. 32
to 36, and operation example 2 by the code optimization unit
2201 will be explained in detail with reference to FIGS. 37
to 42.

FIGS. 32 to 36 are explanatory diagrams illustrating the
detailed operation example 1 by the code optimization unit.
First, the acquisition part 3101 acquires a computational
code cc321. The number of performance computing instruc-
tions for individual instructions within a target block b is
determined based on the configuration of the host CPU 201.
In an example of the computational code cc321, perfor-
mance computing instructions for adding the performance
values of individual instructions to the target block b are
implemented by the following three instructions:

performance computing instruction 1: load performance
value to register

performance computing instruction 2: add performance
value to register

performance computing instruction 3: store value of reg-
ister in performance value

The first detecting part 3102 selects an address included
in the call instruction list [._helper, and defines the selected
address as m_helper. Then, the first detecting part 3102
detects a helper function 1 call instruction represented by
m_helper. In the example of FIG. 32, for easier understand-
ing, the order of an instruction from the beginning is used as
the address of the instruction. Since “6” exists in the call
instruction list L_helper, the first detecting part 3102 detects
a helper function 1 call instruction of an instruction i2.

For example, if an instruction coded immediately before
the detected helper function 1 call instruction is a perfor-
mance computing instruction, the second detecting part
3103 defines the address of the performance computing
instruction as r_start. If an instruction coded immediately
before the detected helper function 1 call instruction is not
a performance computing instruction, the second detecting
part 3103 defines the address representing the detected
helper function 1 call instruction as r_start. In the example

US 9,465,595 B2

33

of FIG. 33, the address representing a performance comput-
ing instruction 1 of an instruction il is represented as r_start.

Then, the second detecting part 3103 searches for an
instruction subsequent to the detected helper function 1 call
instruction of the instruction i2. Then, the second detecting
part 3103 searches a range from the helper function 1 call
instruction of the instruction i2 to a helper function 1 call
instruction whose address is not registered in the call
instruction list [_helper. The second detecting part 3103
defines an address representing an instruction immediately
before the helper function 1 call instruction that is not
registered, out of instructions existing between the helper
function 1 call instruction of the instruction i2 and the helper
function 1 call instruction that is not registered, as r_end. In
the case where no helper function 1 call instruction whose
address is not registered in the call instruction list L_helper
follows the helper function 1 call instruction of the instruc-
tion 12, the second detecting part 3103 defines the address
representing the last instruction within the target block b as
r_end. In the example of FIG. 34, r_end represents the
address representing the helper function 1 call instruction of
the instruction i2.

The calculating part 3104 acquires a performance value to
be added to the performance value of the target block b
based on a performance computing instruction of an instruc-
tion group from the instruction represented by r_start to the
instruction represented by r_end. The calculating part 3104
acquires a performance value to be added to the performance
value of the target block b based on the helper function 1 call
instruction of the instruction group. The performance value
to be added to the performance value of the target block b
based on the helper function 1 call instruction of the instruc-
tion group is, for example, the performance value of an
access instruction for the case where the data cache memory
1001 is not used. The performance value to be added to the
performance value of the target block b based on the helper
function 1 call instruction of the instruction group is, for
example, the performance value of an access instruction for
the case where conversion information exists in the TLB. In
the example of the helper function 2 cache_Id (address,
rep_delay, pre_delay) illustrated in FI1G. 13, three arguments
are passed to the helper function cache_Id. Therefore, in the
case where the host CPU 201 is based on x86 architecture,
a helper function 1 call instruction includes the following
four instructions:

push pre_delay: store the third argument to stack

push rep_delay: store the second argument to stack

push addr: store the first argument to stack

call cache_Id: call helper function 1 cache_Id.

The calculating part 3104 acquires the performance value
of the helper function 1 call instruction by referring to
pre_delay or the like of the four instructions and calculating
a performance value for the case where the data cache
memory 1001 is not used.

Then, the calculating part 3104 calculates the total value
of the acquired performance values. In the example of FIG.
35, since the performance value of the performance com-
puting instruction 2 of the instruction il is 1 and the
performance value of the helper function 1 call instruction of
the instruction i2 is 2, the total value sum is 3.

The replacing part 3105 generates an instruction group in
which a host instruction included in an instruction group of
a range from the instruction represented by r_start to the
instruction represented by r_end and a performance com-
puting instruction for adding the total value sum to the
performance value of the target block b are arranged in
order. As illustrated in FIG. 36, the replacing part 3105

10

15

20

25

30

35

40

45

50

55

60

65

34

generates a computational code cc362 by replacing the
instruction group of the range from the instruction repre-
sented by r_start to the instruction represented by r_end with
the generated instruction group. After the replacement is
completed, the replacing part 3105 deletes m_helper from
the call instruction list _helper. The replacing part 3105
also corrects, based on the computational code cc321 before
the replacement and the computational code cc362 after the
replacement, addresses included in the call instruction list
L_helper. Then, the code optimization unit 2201 repeats
processing from the acquisition part 3101 to the replacing
part 3105 until the call instruction list [,_helper becomes
empty.

FIGS. 37 to 42 are explanatory diagrams illustrating the
detailed operation example 2 by the code optimization unit.
First, the acquisition part 3101 acquires a computational
code cc371. The first detecting part 3102 selects an address
included in the call instruction list L_helper, and defines the
selected address as m_helper. Then, the first detecting part
3102 detects a helper function 1 call instruction represented
by m_helper. In the example of FIG. 37, for easier under-
standing, the order of an instruction from the beginning is
defined as the address of the instruction. Since “2” exists in
the call instruction list L_helper, the first detecting part 3102
detects a helper function 1 call instruction of an instruction
il.

For example, in the case where an instruction coded
immediately before the detected helper function 1 call
instruction is a performance computing instruction, the
second detecting part 3103 defines the address representing
the performance computing instruction as r_start. In the case
where the instruction coded immediately before the detected
helper function 1 call instruction is not a performance
computing instruction, the second detecting part 3103
defines the address representing the detected helper function
1 call instruction as r_start. In the example of FIG. 39, the
address representing the helper function 1 call instruction of
the instruction il represents r_start.

Then, the second detecting part 3103 searches for an
instruction subsequent to the detected helper function 1 call
instruction of the instruction i2. The second detecting part
3103 searches a range from the helper function 1 call
instruction of the instruction i2 to a helper function 1 call
instruction whose address is not registered in the call
instruction list [_helper. The second detecting part 3103
defines an address representing an instruction immediately
before the helper function 1 call instruction that is not
registered, out of instructions existing between the helper
function 1 call instruction of the instruction i2 and the helper
function 1 call instruction that is not registered, as r_end. In
the case where no helper function 1 call instruction whose
address is not registered in the call instruction list L_helper
follows the helper function 1 call instruction of the instruc-
tion 12, the second detecting part 3103 defines the address
representing the last instruction within the target block b as
r_end. In the example of FIG. 40, r_end represents the
address representing the performance computing instruction
of the instruction i2.

The calculating part 3104 acquires a performance value to
be added to the performance value of the target block b
based on a performance computing instruction in the instruc-
tion group of the range from the instruction represented by
r_start to the instruction represented by r_end. The calcu-
lating part 3104 acquires a performance value to be added to
the performance value of the target block b based on the
helper function 1 call instruction of the instruction group.
Then, the calculating part 3104 calculates the total value of

US 9,465,595 B2

35

the acquired performance values. In the example of FIG. 41,
since the performance value of the helper function 1 call
instruction of the instruction il is 2 and the performance
value of the performance computing instruction 2 of the
instruction i2 is 1, the total value sum is 3.

As in the operation example 1, the replacing part 3105
generates an instruction group in which a host instruction
included in the instruction group of the range from the
instruction represented by r_start to the instruction repre-
sented by r_end and a performance computing instruction
for adding the total value sum to the performance value of
the target block b are arranged in order. As illustrated in FI1G.
42, the replacing part 3105 generates a computational code
ccd22 by replacing the instruction group of the range from
the instruction represented by r_start to the instruction
represented by r_end with the generated instruction group.
After the replacement is completed, the replacing part 3105
deletes the address representing the helper function 1 call
instruction included in the instruction group of the range
from the instruction represented by r_start to the instruction
represented by r_end from the call instruction list I_helper.
The replacing part 3105 also corrects, based on the compu-
tational code cc371 before the replacement and the compu-
tational code cc422 after the replacement, addresses
included in the call instruction list [._helper. Then, the code
optimization unit 2201 repeats processing from the acqui-
sition part 3101 to the replacing part 3105 until the call
instruction list L_helper becomes empty.

As described above, by reducing the number of instruc-
tions included in a computational code, the amount of
computation may be reduced.

Example of Computing Processing Procedure by Computing
Apparatus 100 According to Fifth Embodiment

In the fifth embodiment, a computing processing proce-
dure example which is the same as that performed by the
computing apparatus 100 according to the first or second
embodiment will not be explained, and only computing
processing different from that in the first and second embodi-
ments will be explained in detail.

FIGS. 43 and 44 are flowcharts illustrating the code
optimization process illustrated in FIG. 17 in detail. First,
the computing apparatus 100 acquires a computational code
as a target block b (step S4301). Then, the computing
apparatus 100 determines whether or not a call instruction
list L_helper is empty (step S4302). In the case where the
call instruction list L_helper is not empty (step S4302: No),
the computing apparatus 100 sets the first address of the
addresses within the call instruction list [_helper for
m_helper (step S4303).

Next, the computing apparatus 100 determines whether or
not the instruction immediately before the helper function 1
call instruction represented by m_helper is a performance
computing instruction (step S4401). In the case where the
instruction is not a performance computing instruction (step
S4401: No), the computing apparatus 100 sets m_helper as
r_start (step S4402), and proceeds to step S4405.

In contrast, in the case where the instruction is a perfor-
mance computing instruction (step S4401: Yes), the com-
puting apparatus 100 sets the address of the performance
computing instruction immediately before the helper func-
tion 1 call instruction as r_start (step S4403). The computing
apparatus 100 detects a helper function 1 call instruction
whose address is not included in the call instruction list
L_helper from among instructions subsequent to the helper
function 1 call instruction represented by m_helper (step
S4404).

35

40

45

50

36

Then, the computing apparatus 100 determines whether or
not a helper function 1 call instruction whose address is not
included in the call instruction list [._helper is detected
(S4405). In the case where a helper function 1 call instruc-
tion whose address is not included in the call instruction list
L_helper is not detected (step S4405: No), the computing
apparatus 100 sets m_helper as r_end (step S4406), and
proceeds to step S4408. In the case where a helper function
1 call instruction whose address is not included in the call
instruction list [._helper is detected (step S4405: Yes), the
computing apparatus 100 sets the address representing the
instruction immediately before the detected helper function
1 call instruction as r_end (step S4407).

Then, the computing apparatus 100 acquires the perfor-
mance value of a performance computing instruction and the
performance value of a helper function 1 call instruction
existing in a range from the instruction represented by
r_start to the instruction represented by r_end (step S4408).
The computing apparatus 100 calculates the total value of
the acquired performance values (step S4409).

The computing apparatus 100 generates an instruction
group including a host instruction existing in a range from
the instruction represented by r_start to the instruction
represented by r_end and an performance computing
instruction for addition of the calculated total value (step
S4410). The computing apparatus 100 replaces an instruc-
tion group included in the range from the instruction repre-
sented by r_start to the instruction represented by r_end of
the computational code with the generated instruction group
(step S4411). The computing apparatus 100 deletes the
address representing the helper function 1 call instruction
existing in the range from the instruction represented by
r_start to the instruction represented by r_end from the call
instruction list I_helper (step S4412), and returns to step
S4302.

In contrast, in the case where the call instruction list
L_helper is empty in step S4302 (step S4302: Yes), the
computing apparatus 100 detects a helper function 1 call
instruction other than the helper function 1 call instruction
represented by an address within the call instruction list
L_helper of the computational code (step S4304). The
computing apparatus 100 replaces the detected helper func-
tion 1 call instruction with a helper function 2 call instruc-
tion (step S4305), and terminates the series of processing
operations.

As described above, the computing apparatus according
to the first embodiment generates, in the case where an
access destination of an access instruction in an operation
simulation sim is not able to use a cache memory, a
computational code for computing the performance value of
a corresponding block based on the assumption that the
cache memory is not used. Therefore, the amount of com-
putation for the case where the block becomes a target again
may be reduced.

Furthermore, the computing apparatus according to the
first embodiment replaces a helper function 1 call instruction
of an access instruction for which it has been determined that
a cache memory is not available for use in a computational
code with a performance computing instruction of an access
instruction for the case where the cache memory is not
available for use. Therefore, a computational code for com-
puting the performance value of a block for the case where
the cache memory is not available for use at the time of
execution of an access instruction, may be generated easily.

The computing apparatus according to the second
embodiment generates, in the case where an access instruc-
tion within a target block is able to use a cache memory, a

US 9,465,595 B2

37

computational code for computing the performance value of
the block, by correcting the performance value based on an
operation of the cache memory, without depending on an
attribute of the memory area. Therefore, in the case where
the target block becomes a new computing target, since a
determination as to the attribute of the memory area is not
made, the amount of computation of the performance value
may be reduced.

Furthermore, the computing apparatus according to the
second embodiment replaces a helper function 1 call instruc-
tion of an access instruction for which it has been deter-
mined that a cache memory is not available for use in a
computational code with a helper function 2 call instruction.
Therefore, a computational code for computing the perfor-
mance value of a block for the case where a cache memory
is available for use at the time of execution of an access
instruction, may be easily generated.

The computing apparatus according to the third embodi-
ment executes, during a period of time in which the state of
a cache memory is shifted from an unavailable state for use
to an available state for use, a computational code for
computing the performance value of a target block based on
the performance value of an access instruction for the case
where the cache memory is not used. Therefore, the amount
of computation of the performance value of a target block
for a period during which the cache memory is not available
for use, may be reduced, and the performance value of a
target program may be computed more quickly.

Furthermore, the computing apparatus according to the
third embodiment generates, when the state of the cache
memory has been shifted to the available state for use, a
computational code for computing the performance value of
a block, based on the performance values of individual
instructions within the block for the case where the cache
memory is available for use. Therefore, an error in the
computing result of the performance value of the target
program may not occur.

Furthermore, in the computing apparatus according to the
third embodiment, the TLB is not in an available state for
use during initialization of the target CPU. Therefore, after
the initialization of the target CPU is completed, the TLB
becomes available for use. In the third embodiment, during
the period in which the state of the TLB is shifted from an
unavailable state for use to an available state for use, a
computational code for computing the performance value of
a target block based on the performance value of an access
instruction for the case where the TLB is not used, is
executed. Therefore, the amount of computation of the
performance value of the target block during a period in
which the TLB is not available for use may be reduced, and
the performance value of the target program may be com-
puted more quickly.

Furthermore, the computing apparatus according to the
third embodiment generates, when the state of the TLB has
been shifted to the available state for use, a computational
code for computing the performance value of a block, based
on the performance values of individual instructions within
the block for the case where the TLB is used. Therefore, an
error in the computing result of the performance value of the
target program may not occur.

Furthermore, the computing apparatus according to the
fourth embodiment generates, in the case where the opera-
tion mode is a privileged mode at the execution of an access
instruction in an operation simulation, a computational code
for computing the performance value of a target block, based
on the performance values of individual instructions of the
target bock for the case where there is a hit in the TLB.

10

15

20

25

30

35

40

45

50

55

60

65

38

Therefore, since processing for determining whether or not
there is a hit in the TLB is not performed when the target
block becomes a new computing target, the amount of
computation for the case where the target block becomes a
new computing target may be reduced.

The computing apparatus according to the fifth embodi-
ment integrates consecutive performance computing instruc-
tions together into one performance computing instruction at
the replacement of a helper function 1 call instruction with
a performance computing instruction. Therefore, the amount
of computation for the case where a target block becomes a
new computing target may be reduced.

The computing methods explained in the foregoing
embodiments may be realized when a computer, such as a
personal computer or a work station, executes a prepared
program. The method is summarized as follows;

A computing method for use in a computer which com-
putes a performance value of a program for a case where the
program is executed by a processor, the program including
a specific code which is executed multiple times by the
processor and which includes an access instruction for
instructing the processor to access a memory area, the
method including:

determining, in a case where the specific code has become
a computing target for a performance value, whether or not
the processor is able to use a cache memory at a time of
execution of the access instruction in a simulation of an
operation in which the processor executes the program, in
accordance with a direction of the access instruction;

generating, in a case where it has been determined that the
cache memory is not in an available state for use, a com-
putational code for computing the performance value of the
specific code for a case where the processor executes the
specific code, based on performance values of individual
instructions within the specific code for a case where the
cache memory is not used, without depending on an attribute
of the memory area; and

executing, in a case where the specific code has become
a new computing target for a performance value, the gen-
erated computational code.

Or, a computing method for use in a computer which
computes a performance value of a program for a case where
the program is executed by a processor, the program includ-
ing a specific code which is executed multiple times by the
processor and which includes an access instruction for
instructing the processor to access a memory area, the
method including:

determining, in a case where the specific code has become
a computing target for a performance value, whether or not
a translation lookaside buffer accessible by the processor is
in an available state for use at a time of execution of the
access instruction in a simulation of an operation in which
the processor executes the program;

generating, in a case where it has been determined that the
translation lookaside buffer is available for use, a computa-
tional code for computing the performance value of the
specific code for a case where the processor executes the
specific code, based on performance values of individual
instructions within the specific code for a case where the
translation lookaside buffer is not used, without depending
on a state of the translation lookaside buffer;

executing the generated computational code;

determining, in a case where the specific code has become
a new computing target for a performance value, whether or
not the translation lookaside buffer is in the available state
for use at the execution of the access instruction in the
simulation; and

US 9,465,595 B2

39

executing, in a case where it has been determined that the
translation lookaside buffer is not in the available state for
use, the computational code.

Or, a computing method for use in a computer which
computes a performance value of a program for a case where
the program is executed by a processor having two operation
modes, a first mode and a second mode in which an
operation is less limited compared to the first mode, the
program including a specific code which is executed mul-
tiple times by the processor and which includes an access
instruction for instructing the processor to access a memory
area, the method including:

determining, in a case where the specific code has become
a computing target for a performance value, whether or not
the operation mode at a time of execution of the access
instruction in a simulation of an operation in which the
program is executed by the processor is the second mode;

generating, in a case where it has been determined that the
operation mode is the second mode, a computational code
for computing the performance value of the specific code for
a case where the processor executes the specific code, based
on performance values of individual instructions within the
specific code for a case where conversion information of a
logical address representing the memory area and a physical
address representing the memory area is stored in a trans-
lation lookaside buffer accessible by the processor, without
depending on the operation mode; and

executing, in a case where the specific code has become
a new computing target for a performance value, the gen-
erated computational code.

The present computing program may be executed when a
computer reads the computing program recorded in a record-
ing medium which is readable by a computer, such as a disk
or a Universal Serial Bus (USB) memory. Alternatively, the
present computing program may be distributed via a net-
work NET, such as the Internet.

Regarding the first to fifth embodiments described above,
the followings are disclosed.

All examples and conditional language recited herein are
intended for pedagogical purposes to aid the reader in
understanding the invention and the concepts contributed by
the inventor to furthering the art, and are to be construed as
being without limitation to such specifically recited
examples and conditions, nor does the organization of such
examples in the specification relate to a showing of the
superiority and inferiority of the invention. Although the
embodiments of the present invention have been described
in detail, it should be understood that the various changes,
substitutions, and alterations could be made hereto without
departing from the spirit and scope of the invention.

What is claimed is:

1. A computing apparatus that computes a performance
value of a program for a case where the program is executed
by a processor, the program including a specific code which
is executed multiple times by the processor and which
includes an access instruction for instructing the processor to
access a memory area, the computer apparatus comprising:

a first determining unit that determines, in a case where

the specific code has become a computing target for a
performance value, whether or not a cache memory
accessible by the processor is in an available state for
use at a time of execution of the access instruction in a
simulation of an operation in which the processor
executes the program, in accordance with a direction of
the access instruction;

a generating unit that generates, in a case where the first

determining unit has determined that the cache memory

15

20

25

30

35

40

45

50

55

60

65

40

is not in the available state for use, a computational
code for computing the performance value of the
specific code for a case where the processor executes
the specific code, based on performance values of
individual instructions within the specific code for a
case where the cache memory is not used, without
depending on an attribute of the memory area; and

an execution unit that executes the generated computa-
tional code in a case where the specific code has
become a new computing target for a performance
value.
2. The computing apparatus according to claim 1, wherein
the first determining unit determines, in accordance with
whether or not the attribute of the memory area is an
attribute which indicates that the processor is able to use the
cache memory in accordance with the direction of the access
instruction, whether or not the cache memory accessible by
the processor is in the available state for use.
3. The computing apparatus according to claim 1, wherein
the first determining unit makes a determination before the
access instruction is executed in the simulation.
4. The computing apparatus according to claim 1, wherein
in a case where it has been determined that the cache
memory is available for use, the generating unit generates a
computational code for computing the performance value of
the specific code, based on performance values of individual
instructions within the specific code for a case where the
cache memory is used, without depending on the attribute.
5. The computing apparatus according to claim 1,
wherein the computational code generated by the gener-
ating unit is a first computational code and the gener-
ating unit generates the first computational code by

acquiring a second computational code including a first
computing instruction for adding performance values
of individual instructions different from the access
instruction within the specific code to the performance
value of the specific code, and a second computing
instruction for adding the performance value of the
access instruction based on the attribute to the perfor-
mance value of the specific code, and
replacing, in the acquired second computational code, a
second computing instruction for the access instruction
for which it has been determined that the attribute does
not indicate that the cache memory is available for use,
with a third computing instruction for adding the per-
formance value of the access instruction for the case
where the cache memory is not used to the performance
value of the specific code.
6. The computing apparatus according to claim 4,
wherein the computational code generated by the gener-
ating unit is a first computational code and the gener-
ating unit generates the first computational code by

acquiring a second computational code including a first
computing instruction for adding performance values
of individual instructions different from the access
instruction within the specific code to the performance
value of the specific code, and a second computing
instruction for adding the performance value of the
access instruction based on the attribute to the perfor-
mance value of the specific code, and

replacing, in the acquired second computational code, a

second computing instruction for the access instruction
for which it has been determined that the attribute
indicates that the cache memory is available for use,
with a third computing instruction for adding the per-

US 9,465,595 B2

41

formance value of the access instruction for the case
where the cache memory is used to the performance
value of the specific code.

7. The computing apparatus according to claim 1,

wherein the computational code generated by the gener-
ating unit is a first computational code and the gener-
ating unit generates the first computational code by

acquiring a second computational code including a first
computing instruction for adding performance values
of individual instructions different from the access
instruction within the specific code to the performance
value of the specific code, and a second computing
instruction for adding performance values of individual
access instructions based on the attribute to the perfor-
mance value of the specific code,

detecting, in the acquired second computational code, a
second computing instruction for the access instruction
for which it has been determined that the attribute does
not indicate that the cache memory is available for use,

detecting, from the second computational code, a first
computing instruction existing in a range from the
detected second computing instruction to a second
computing instruction for the access instruction for
which it has been determined that the attribute indicates
that the cache memory is available for use,

calculating a total sum of the performance value of the
instruction to be added to the performance value of the
specific code based on the detected first computing
instruction, and the performance value of the access
instruction for a case where the cache memory is not
used at a time of execution of the access instruction for
which it has been determined that the attribute does not
indicate that the cache memory is available for use, and

replacing the detected first computing instruction and the
detected second computing instruction in the second
computational code with a third computing instruction
for adding the total sum to the performance value of the
specific code.

8. The computing apparatus according to claim 1, further

comprising:

a second determining unit that performs, in a case where
the specific code has become a new computing target
for a performance value, a determination as to whether
or not the cache memory accessible by the processor is

in an available state for use at the time of execution of

the access instruction in the simulation, before the
execution of the access instruction in the simulation;
and

a second execution unit that executes the computational
code in a case where the second determining unit has
determined that the cache memory is not in the avail-
able state for use.

9. A computing apparatus that computes a performance
value of a program for a case where the program is executed
by a processor, the program including a specific code which
is executed multiple times by the processor and which
includes an access instruction for instructing the processor to
access a memory area, comprising:

a first determining unit that determines, in a case where
the specific code has become a computing target for a
performance value, whether or not a translation looka-
side buffer accessible by the processor is in an available
state for use at a time of execution of the access
instruction in a simulation of an operation in which the
processor executes the program;

a generating unit that generates, in a case where the first
determining unit has determined that the translation

10

15

20

25

30

35

40

45

50

55

60

65

42

lookaside buffer is available for use, a computational
code for computing the performance value of the
specific code for a case where the processor executes
the specific code, based on performance values of
individual instructions within the specific code for a
case where the translation lookaside buffer is not used,
without depending on a state of the translation looka-
side buffer;

a first execution unit that executes the computational code
generated by the generating unit;

a second determining unit that determines, in a case where
the specific code has become a new computing target
for a performance value, whether or not the translation
lookaside buffer is in the available state for use at the
time of execution of the access instruction in the
simulation; and

a second execution unit that executes the computational
code in a case where the second determining unit has
determined that the translation lookaside buffer is not in
the available state for use.

10. The computing apparatus according to claim 9,

wherein in a case where it has been determined that the
translation lookaside buffer is in the available state for
use, the generating unit generates a computational code
for computing the performance value of the specific
code, based on performance values of individual
instructions within the specific code for a case where
the translation lookaside buffer is used.

11. A computing apparatus that computes a performance
value of a program for a case where the program is executed
by a processor having two operation modes, a first mode and
a second mode in which an operation is less limited com-
pared to the first mode, the program including a specific
code which is executed multiple times by the processor and
which includes an access instruction for instructing the
processor to access a memory area, comprising:

a determining unit that determines, in a case where the
specific code has become a computing target for a
performance value, whether or not the operation mode
at a time of execution of the access instruction in a
simulation of an operation in which the processor
executes the program is the second mode;

a generating unit that generates, in a case where the
determining unit has determined that the operation
mode is the second mode, a computational code for
computing the performance value of the specific code
for a case where the processor executes the specific
code, based on performance values of individual
instructions within the specific code for a case where
conversion information of a logical address represent-
ing the memory area and a physical address represent-
ing the memory area is stored in a translation lookaside
buffer accessible by the processor, without depending
on the operation mode; and

an execution unit that executes, in a case where the
specific code has become a new computing target for a
performance value, the computational code generated
by the generating unit.

12. The computing apparatus according to claim 11,

wherein in a case where the determining unit has deter-
mined that the operation mode is not the second mode,
the generating unit generates a computational code for
computing the performance value of the specific code
for a case where the processor executes the specific
code, based on performance values of individual
instructions within the specific code for a case where

US 9,465,595 B2

43

the translation lookaside buffer is used, without
depending on the operation mode.

13. The computing apparatus according to claim 11,

wherein the computational code generated by the gener-
ating unit is a first computational code and the gener-
ating unit generates the first computational code by

acquiring a second computational code including a first
computing instruction for adding performance values
of individual instructions different from the access
instruction within the specific code to the performance
value of the specific code, and a second computing
instruction for adding the performance value of the
access instruction based on whether or not the conver-
sion information is stored in the translation lookaside
buffer to the performance value of the specific code,
and

replacing, in the acquired second computational code, a
second computing instruction for the access instruction
for which it has been determined that the operation
mode is the second mode, with a third computing
instruction for adding the performance value of the
access instruction for the case where the conversion
information is stored in the translation lookaside buffer
to the performance value of the specific code.

14. The computing apparatus according to claim 11,

wherein the computational code generated by the gener-
ating unit is a first computational code and the gener-
ating unit generates the first computational code by

acquiring a second computational code including a first
computing instruction for adding performance values
of individual instructions different from the access
instruction within the specific code to the performance

15

20

25

30

44

value of the specific code, and a second computing
instruction for adding performance values of individual
access instructions based on whether or not the con-
version information is stored in the translation looka-
side buffer to the performance value of the specific
code,

detecting, in the acquired second computational code, a

second computing instruction for the access instruction
for which it has been determined that the operation
mode is the second mode,

detecting, from the second computational code, a first

computing instruction existing in a range from the
detected second computing instruction to a second
computing instruction for the access instruction for
which it has been determined that the operation mode
is not the second mode,

calculating a total sum of the performance value of the

instruction to be added to the performance value of the
specific code based on the detected first computing
instruction, and the performance value of the access
instruction for the case where the conversion informa-
tion is stored in the translation lookaside buffer at the
time of execution of the access instruction for which it
has been determined that the operation mode is the
second mode, and

replacing the detected first computing instruction and the

detected second computing instruction in the second
computational code with a third computing instruction
for adding the total sum to the performance value of the
specific code.

